1
|
Huff RD, Carlsten C and Hirota JA: An
update on immunologic mechanisms in the respiratory mucosa in
response to air pollutants. J Allergy Clin Immunol. 143:1989–2001.
2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li N, Alam J, Venkatesan MI, Eiguren FA,
Schmitz D, Di SE, Slaughter N, Killeen E, Wang X, Huang A, et al:
Nrf2 is a key transcription factor that regulates antioxidant
defense in macrophages and epithelial cells: Protecting against the
proinflammatory and oxidizing effects of diesel exhaust chemicals.
J Immunol. 173:3467–3481. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Georas SN and Rezaee F: Epithelial barrier
function: At the front line of asthma immunology and allergic
airway inflammation. J Allergy Clin Immunol. 134:509–520. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Guan L, Rui W, Bai R, Zhang W, Zhang F and
Ding W: Effects of size-fractionated particulate matter on cellular
oxidant radical generation in human bronchial epithelial BEAS-2B
cells. Int J Environ Res Public Health. 13:4832016. View Article : Google Scholar :
|
5
|
Leclercq B, Kluza J, Antherieu S, Sotty J,
Alleman LY, Perdrix E, Loyens A, Coddeville P, Lo Guidice JM,
Marchetti P and Garçon G: Air pollution-derived PM2.5
impairs mitochondrial function in healthy and chronic obstructive
pulmonary diseased human bronchial epithelial cells. Environ
Pollut. 243:1434–1449. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Raudoniute J, Stasiulaitiene I,
Kulvinskiene I, Bagdonas E, Garbaras A, Krugly E, Martuzevicius D,
Bironaite D and Aldonyte R: Pro-inflammatory effects of extracted
urban fine particulate matter on human bronchial epithelial cells
BEAS-2B. Environ Sci Pollut Res Int. 25:32277–32291. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Gong P, Hu B, Stewart D, Ellerbe M,
Figueroa YG, Blank V, Beckman BS and Alam J: Cobalt induces heme
oxygenase-1 expression by a hypoxia-inducible factor-independent
mechanism in Chinese hamster ovary cells: Regulation by Nrf2 and
MafG transcription factors. J Biol Chem. 276:27018–27025. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu MX, Zhu YF, Chang HF and Liang Y:
Nanoceria restrains PM2.5-induced metabolic disorder and
hypothalamus inflammation by inhibition of astrocytes activation
related NF-κB pathway in Nrf2 deficient mice. Free Radic Biol Med.
99:259–272. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Motterlini R, Foresti R, Bassi R and Green
CJ: Curcumin, an anti-oxidant and anti-inflammatory agent, induces
heme oxygenase-1 and protects endothelial cells against oxidative
stress. Free Radic Biol Med. 28:1303–1312. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fetoni AR, Paciello F, Mezzogori D, Rolesi
R, Eramo SL, Paludetti G and Troiani D: Molecular targets for
anticancer redox chemotherapy and cisplatin-induced ototoxicity:
The role of curcumin on pSTAT3 and Nrf-2 signalling. Br J Cancer.
113:1434–1444. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qi Ni, Zeng SE, Tan N, Huang LZ, Cheng QY
and Zhang MY: Effect of curcumin on proliferation of hepatocellular
carcinoma Hep1 cells and expression of HIF-1α mRNA in normal oxygen
conditions. Liaoning Tra Chin Med. 8:21–23. 2010.
|
12
|
Song XJ, Zhou HY, Sun YX and Huang HC:
Inhibitory effects of curcumin on H2O2-induced cell damage and APP
expression and processing in SH-SY5Y cells transfected with APP
gene with Swedish mutation. Mol Biol Rep. 47:2047–2059. 2020.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Woods CG, Fu J, Xue P, Hou Y, Pluta LJ,
Yang L, Zhang Q, Thomas RS, Andersen ME and Pi J: Dose-dependent
transitions in Nrf2-mediated adaptive response and related stress
responses to hypochlorous acid in mouse macrophages. Toxicol Appl
Pharmacol. 238:27–36. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
15
|
Suo D, Zeng S, Zhang J, Meng L and Weng L:
PM2.5 induces apoptosis, oxidative stress injury and
melanin metabolic disorder in human melanocytes. Exp Ther Med.
19:3227–3238. 2020.PubMed/NCBI
|
16
|
Li X, Ding Z, Zhang C, Zhang X, Meng Q, Wu
S, Wang S, Yin L, Pu Y and Chen R: MicroRNA-1228(*) inhibit
apoptosis in A549 cells exposed to fine particulate matter. Environ
Sci Pollut Res Int. 23:10103–10113. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li N and Nel AE: Role of the Nrf2-mediated
signaling pathway as a negative regulator of inflammation:
Implications for the impact of particulate pollutants on asthma.
Antioxid Redox Signal. 8:88–98. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang LF, Su SW, Wang L, Zhang GQ, Zhang R,
Niu YJ, Guo YS, Li CY, Jiang WB, Liu Y and Guo HC:
Tert-butylhydroquinone ameliorates doxorubicin-induced
cardiotoxicity by activating Nrf2 and inducing the expression of
its target genes. Am J Transl Res. 7:1724–35. 2015.PubMed/NCBI
|
19
|
Block ML and Calderón-Garcidueñas L: Air
pollution: Mechanisms of neuroinflammation and CNS disease. Trends
Neurosci. 32:506–516. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang S, Jiao Y, Li C, Liang X, Jia H, Nie
Z and Zhang Y: Dimethyl itaconate alleviates the inflammatory
responses of macrophages in sepsis. Inflammation. Oct 7–2020.Epub
ahead of print. View Article : Google Scholar
|
21
|
Jia H, Liu Y, Guo D, He W, Zhao L and Xia
S: PM2.5-induced pulmonary inflammation via activating
of the NLRP3/caspase-1 signaling pathway. Environ Toxicol. Sep
30–2020.Epub ahead of print.
|
22
|
Ravanetti L, Dijkhuis A, Dekker T, Sabogal
Pineros YS, Ravi A, Dierdorp BS, Erjefält JS, Mori M, Pavlidis S,
Adcock IM, et al: IL-33 drives influenza-induced asthma
exacerbations by halting innate and adaptive antiviral immunity. J
Allergy Clin Immunol. 143:1355–1370.e16. 2019. View Article : Google Scholar
|
23
|
Gorska K, Nejman-Gryz P, Paplinska-Goryca
M, Korczynski P, Prochorec-Sobieszek M and Krenke R: Comparative
study of IL-33 and IL-6 levels in different respiratory samples in
mild-to-moderate asthma and COPD. COPD. 15:36–45. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chang SH, Reynolds JM, Pappu BP, Chen G,
Martinez GJ and Dong C: Interleukin-17C promotes Th17 cell
responses and autoimmune disease via interleukin-17 receptor E.
Immunity. 35:611–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Swaidani S, Bulek K, Kang Z, Liu C, Lu Y,
Yin W, Aronica M and Li X: The critical role of epithelial-derived
Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J
Immunol. 182:1631–1640. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bao ZJ, Fan YM, Cui YF, Sheng YF and Zhu
M: Effect of PM2.5 mediated oxidative stress on the
innate immune cellular response of Der p1 treated human bronchial
epithelial cells. Eur Rev Med Pharmacol Sci. 21:2907–2912.
2017.PubMed/NCBI
|
27
|
Keleku LN, Suzuki M and Yamamoto M: An
overview of the advantages of KEAP1-NRF2 system activation during
inflammatory disease treatment. Antioxid Redox Signal.
29:1746–1755. 2018. View Article : Google Scholar
|
28
|
Menon VP and Sudheer AR: Antioxidant and
anti-inflammatory properties of curcumin. Adv Exp Med Biol.
595:105–125. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Merrell JG, McLaughlin SW, Tie L,
Laurencin CT, Chen AF and Nair LS: Curcumin-loaded
poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with
anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol
Physiol. 36:1149–1156. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang X, Lv JN, Li H, Jiao B, Zhang QH,
Zhang Y, Zhang J, Liu YQ, Zhang M, Shan H, et al: Curcumin reduces
lung inflammation via Wnt/β-catenin signaling in mouse model of
asthma. J Asthma. 54:335–340. 2017. View Article : Google Scholar
|
31
|
Lin X, Bai D, Wei Z, Zhang Y, Huang Y,
Deng H and Huang X: Curcumin attenuates oxidative stress in
RAW264.7 cells by increasing the activity of antioxidant enzymes
and activating the Nrf2-Keap1 pathway. PLoS One. 14:e02167112019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zheng LZ, Chen LW, Hu XY, Lian J, Zhao GJ,
Hong GL, Lu ZQ and Qiu QM: Curcumin upregitates mitochondrial
fusion protein 2 to relieve acute lung injury in sepsis mice. Chin
J Burns. 29:58–64. 2020.
|
33
|
Qin K and Guo XJ: Research progress on the
mechanism of curcumin in the treatment of chronic obstructive
pulmonary disease. Chin J Respirat Cri Care. 19:99–103. 2020.
|
34
|
Qin Z, Wang B, Tan ZX and Luo SH: Curcumin
inhibits the TLR4/HMGB1 pathway to protect lipopolysaccharide from
inducing acute lung injury. Chin J Clin Thor Cardiovasc Sur.
27:89–92. 2020.
|