1
|
van Dam H and Castellazzi M: Distinct
roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene.
20:2453–2464. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shaulian E and Karin M: AP-1 as a
regulator of cell life and death. Nat Cell Biol. 4:E131–E136. 2002.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chiu R, Boyle WJ, Meek J, Smeal T, Hunter
T and Karin M: The c-fos protein interacts with c-JunAP-1 to
stimulate transcription of AP-1 responsive genes. Cell. 54:541–552.
1988. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tulchinsky E: Fos family members:
Regulation, structure and role in oncogenic transformation. Histol
Histopathol. 15:921–928. 2000.PubMed/NCBI
|
5
|
Lim H and Kim HP: Matrix
metalloproteinase-13 expression in IL-1beta-treated chondrocytes by
activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways. Arch
Pharm Res. 34:109–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hong S, Skaist AM, Wheelan SJ and Friedman
AD: AP-1 protein induction during monopoiesis favors C/EBP: AP-1
heterodimers over C/EBP homodimerization and stimulates FosB
transcription. J Leukoc Biol. 90:643–651. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Duan H, Zhu M, Xiong Q, Wang Y, Xu C, Sun
J, Wang C, Zhang H, Xu P and Peng Y: Regulation of enterovirus 2A
protease-associated viral IRES activities by the cell's ERK
signaling cascade: Implicating ERK as an efficiently antiviral
target. Antiviral Res. 143:13–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shi W, Hou X, Peng H, Zhang L, Li Y, Gu Z,
Jiang Q, Shi M, Ji Y and Jiang J: MEK/ERK signaling pathway is
required for enterovirus 71 replication in immature dendritic
cells. Virol J. 11:2272014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kehle J, Roth B, Metzger C, Pfitzner A and
Enders G: Molecular characterization of an Enterovirus 71 causing
neurological disease in Germany. J Neurovirol. 9:126–128. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Schmidt NJ, Lennette EH and Ho HH: An
apparently new enterovirus isolated from patients with disease of
the central nervous system. J Infect Dis. 129:304–309. 1974.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen LL, Kung YA, Weng KF, Lin JY, Horng
JT and Shih SR: Enterovirus 71 infection cleaves a negative
regulator for viral internal ribosomal entry site-driven
translation. J Virol. 87:3828–3838. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Thompson SR and Sarnow P: Enterovirus 71
contains a type I IRES element that functions when eukaryotic
initiation factor eIF4G is cleaved. Virology. 315:259–266. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Schmeing TM and Ramakrishnan V: What
recent ribosome structures have revealed about the mechanism of
translation. Nature. 461:1234–1242. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rodnina MV and Wintermeyer W: Recent
mechanistic insights into eukaryotic ribosomes. Curr Opin Cell
Biol. 21:435–443. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Silvera D, Formenti SC and Schneider RJ:
Translational control in cancer. Nat Rev Cancer. 10:254–266. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Le Quesne JP, Spriggs KA, Bushell M and
Willis AE: Dysregulation of protein synthesis and disease. J
Pathol. 220:140–151. 2010. View Article : Google Scholar
|
17
|
Hellen CU and Sarnow P: Internal ribosome
entry sites in eukaryotic mRNA molecules. Genes Dev. 15:1593–1612.
2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Balvay L, Soto Rifo R, Ricci EP, Decimo D
and Ohlmann T: Structural and functional diversity of viral IRESes.
Biochim Biophys Acta. 1789:542–557. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Komar AA and Hatzoglou M: Internal
ribosome entry sites in cellular mRNAs: Mystery of their existence.
J Biol Chem. 280:23425–23428. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Godet AC, David F, Hantelys F, Tatin F,
Lacazette E, Garmy-Susini B and Prats AC: IRES trans-acting
factors, key actors of the stress response. Int J Mol Sci. 20:2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Sherrill KW, Byrd MP, Van Eden ME and
Lloyd RE: BCL-2 translation is mediated via internal ribosome entry
during cell stress. J Biol Chem. 279:29066–29074. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Komar AA and Hatzoglou M: Cellular
IRES-mediated translation: The war of ITAFs in pathophysiological
states. Cell Cycle. 10:229–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stoneley M, Paulin FE, Le Quesne JP,
Chappell SA and Willis AE: C-Myc 5′ untranslated region contains an
internal ribosome entry segment. Oncogene. 16:423–428. 1998.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang DQ, Halaby MJ and Zhang Y: The
identification of an internal ribosomal entry site in the
5′-untranslated region of p53 mRNA provides a novel mechanism for
the regulation of its translation following DNA damage. Oncogene.
25:4613–4619. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Blau L, Knirsh R, Ben-Dror I, Oren S,
Kuphal S, Hau P, Proescholdt M, Bosserhoff AK and Vardimon L:
Aberrant expression of c-Jun in glioblastoma by internal ribosome
entry site (IRES)-mediated translational activation. Proc Natl Acad
Sci USA. 109:E2875–E2884. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sagliocco FA, Vega Laso MR, Zhu D, Tuite
MF, McCarthy JE and Brown AJ: The influence of 5′-secondary
structures upon ribosome binding to mRNA during translation in
yeast. J Biol Chem. 268:26522–26530. 1994. View Article : Google Scholar
|
27
|
Li Q, Gao WQ, Dai WY, Yu C, Zhu RY and Jin
J: ATF2 translation is induced under chemotherapeutic drug-mediated
cellular stress via an IRES-dependent mechanism in human hepatic
cancer Bel7402 cells. Oncol Lett. 12:4795–4802. 2016. View Article : Google Scholar
|
28
|
Lin Y, Wang Y, Li H, Chen Y, Qiao W, Xie
Z, Tan J and Yang Z: Simultaneous and systematic analysis of
cellular and viral gene expression during Enterovirus 71-induced
host shutoff. Protein Cell. 10:72–77. 2019. View Article : Google Scholar :
|
29
|
Coldwell MJ, Mitchell SA, Stoneley M,
MacFarlane M and Willis AE: Initiation of Apaf-1 translation by
internal ribosome entry. Oncogene. 19:899–905. 2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ohno Y, Kihara A, Sano T and Igarashi Y:
Intracellular localization and tissue-specific distribution of
human and yeast DHHC cysteine-rich domain-containing proteins.
Biochim Biophys Acta. 1761:474–483. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Caceres CJ, Contreras N, Angulo J,
Vera-Otarola J, Pino-Ajenjo C, Llorian M, Ameur M, Lisboa F, Pino
K, Lowy F, et al: Polypyrimidine tract-binding protein binds to the
5′ untranslated region of the mouse mammary tumor virus mRNA and
stimulates cap-independent translation initiation. FEBS J.
283:1880–1901. 2016. View Article : Google Scholar
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Gao G, Dhar S and Bedford MT: PRMT5
regulates IRES-dependent translation via methylation of hnRNP A1.
Nucleic Acids Res. 45:4359–4369. 2017.PubMed/NCBI
|
34
|
Wein N, Vulin A, Falzarano MS, Szigyarto
CA, Maiti B, Findlay A, Heller KN, Uhlén M, Bakthavachalu B,
Messina S, et al: Translation from a DMD exon 5 IRES results in a
functional dystrophin isoform that attenuates dystrophinopathy in
humans and mice. Nat Med. 20:992–1000. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Thompson SR: So you want to know if your
message has an IRES? Wiley Interdiscip Rev RNA. 3:697–705. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kunze MM, Benz F, Brauss TF, Lampe S,
Weigand JE, Braun J, Richter FM, Wittig I, Brüne B and Schmid T:
sST2 translation is regulated by FGF2 via an hnRNP A1-mediated
IRES-dependent mechanism. Biochim Biophys Acta. 1859:848–859. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Lin JY, Li ML, Huang PN, Chien KY, Horng
JT and Shih SR: Heterogeneous nuclear ribonuclear protein K
interacts with the enterovirus 71 5′ untranslated region and
participates in virus replication. J Gen Virol. 89:2540–2549. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang X, Hua L, Yan D, Zhao F, Liu J, Zhou
H, Liu J, Wu M, Zhang C, Chen Y, et al: Overexpression of PCBP2
contributes to poor prognosis and enhanced cell growth in human
hepatocellular carcinoma. Oncol Rep. 36:3456–3464. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kumar A, Ray U and Das S: Human La protein
interaction with GCAC near the initiator AUG enhances hepatitis C
Virus RNA replication by promoting linkage between 5′ and 3′
untranslated regions. J Virol. 87:6713–6726. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dave P, George B, Sharma DK and Das S:
Polypyrimidine tract-binding protein (PTB) and PTB-associated
splicing factor in CVB3 infection: An ITAF for an ITAF. Nucleic
Acids Res. 45:9068–9084. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Plevka P, Perera R, Cardosa J, Kuhn RJ and
Rossmann MG: Crystal structure of human enterovirus 71. Science.
336:12742012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Le Quesne JP, Stoneley M, Fraser GA and
Willis AE: Derivation of a structural model for the c-myc IRES. J
Mol Biol. 310:111–126. 2001. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fros JJ and Pijlman GP: Alphavirus
Infection: Host cell shut-off and inhibition of antiviral
responses. Viruses. 8:1662016. View Article : Google Scholar :
|
44
|
Hoffmann M, Wu YJ, Gerber M,
Berger-Rentsch M, Heimrich B, Schwemmle M and Zimmer G:
Fusion-active glycoprotein G mediates the cytotoxicity of vesicular
stomatitis virus M mutants lacking host shut-off activity. J Gen
Virol. 91:2782–2793. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Vreede FT and Fodor E: The role of the
influenza virus RNA polymerase in host shut-off. Virulence.
1:436–439. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dremel SE and DeLuca NA: Herpes simplex
viral nucleoprotein creates a competitive transcriptional
environment facilitating robust viral transcription and host shut
off. Elife. 8:e511092019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rutkowski AJ, Erhard F, L'Hernault A,
Bonfert T, Schilhabel M, Crump C, Rosenstiel P, Efstathiou S,
Zimmer R, Friedel CC and Dölken L: Widespread disruption of host
transcription termination in HSV-1 infection. Nat Commun.
6:71262015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bai J, Chen X, Liu Q, Zhou X and Long JE:
Characteristics of enterovirus 71-induced cell death and genome
scanning to identify viral genes involved in virus-induced cell
apoptosis. Virus Res. 265:104–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ho BC, Yu SL, Chen JJ, Chang SY, Yan BS,
Hong QS, Singh S, Kao CL, Chen HY, Su KY, et al:
Enterovirus-induced miR-141 contributes to shutoff of host protein
translation by targeting the translation initiation factor eIF4E.
Cell Host Microbe. 9:58–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shi W, Hou X, Li X, Peng H, Shi M, Jiang
Q, Liu X, Ji Y, Yao Y, He C and Lei X: Differential gene
expressions of the MAPK signaling pathway in enterovirus
71-infected rhabdomyosarcoma cells. Braz J Infect Dis. 17:410–417.
2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wu TY, Hsieh CC, Hong JJ, Chen CY and Tsai
YS: IRSS: A web-based tool for automatic layout and analysis of
IRES secondary structure prediction and searching system in silico.
BMC Bioinformatics. 10:1602009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhao J, Wu J, Xu T, Yang Q, He J and Song
X: IRESfinder: Identifying RNA internal ribosome entry site in
eukaryotic cell using framed k-mer features. J Genet Genomics.
45:403–406. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wang J and Gribskov M: IRESpy: An XGBoost
model for prediction of internal ribosome entry sites. BMC
Bioinformatics. 20:4092019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kolekar P, Pataskar A, Kulkarni-Kale U,
Pal J and Kulkarni A: IRESPred: Web server for prediction of
cellular and viral internal ribosome entry site (IRES). Sci Rep.
6:274362016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Plank TD and Kieft JS: The structures of
nonprotein-coding RNAs that drive internal ribosome entry site
function. Wiley Interdiscip Rev RNA. 3:195–212. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Li ML, Lin JY, Chen BS, Weng KF, Shih SR,
Calderon JD, Tolbert BS and Brewer G: EV71 3C protease induces
apoptosis by cleavage of hnRNP A1 to promote apaf-1 translation.
PLoS One. 14:e02210482019. View Article : Google Scholar : PubMed/NCBI
|