1
|
Liu T, Ma X, Ouyang T, Chen H, Xiao Y,
Huang Y, Liu J and Xu M: Efficacy of 5-aminolevulinic acid-based
photodynamic therapy against keloid compromised by downregulation
of SIRT1-SIRT3-SOD2-mROS dependent autophagy pathway. Redox Biol.
20:195–203. 2019. View Article : Google Scholar
|
2
|
Shi K, Qiu X, Zheng W, Yan D and Peng W:
MiR-203 regulates keloid fibroblast proliferation, invasion, and
extracellular matrix expression by targeting EGR1 and FGF2. Biomed
Pharmacother. 108:1282–1288. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Har-Shai Y, Brown W, Labbé D, Dompmartin
A, Goldine I, Gil T, Mettanes I and Pallua N: Intralesional
cryosurgery for the treatment of hypertrophic scars and keloids
following aesthetic surgery: The results of a prospective
observational study. Int J Low Extrem Wounds. 7:169–175. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Berman B, Maderal A and Raphael B: Keloids
and hypertrophic scars: Pathophysiology, classification, and
treatment. Dermatol Surg. 43(Suppl 1): S3–S18. 2017. View Article : Google Scholar
|
5
|
Yang JY and Yang SY: Are auricular keloids
and persistent hypertrophic scars resectable? The role of intrascar
excision. Ann Plast Surg. 69:637–642. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shin JY, Yun SK, Roh SG, Lee NH and Yang
KM: Efficacy of 2 representative topical agents to prevent keloid
recurrence after surgical excision. J Oral Maxillofac Surg.
75:401.e1–401.e6. 2017. View Article : Google Scholar
|
7
|
Nong Q, Li S, Wu Y and Liu D: LncRNA
COL1A2-AS1 inhibits the scar fibroblasts proliferation via
regulating miR-21/Smad7 pathway. Biochem Biophys Res Commun.
495:319–324. 2018. View Article : Google Scholar
|
8
|
Yan L, Wang LZ, Xiao R, Cao R, Pan B, Lv
XY, Jiao H, Zhuang Q, Sun XJ and Liu YB: Inhibition of
microRNA-21-5p reduces keloid fibroblast autophagy and migration by
targeting PTEN after electron beam irradiation. Lab Invest.
100:387–399. 2020. View Article : Google Scholar
|
9
|
Zhang G, Guan Q, Chen G, Qian F and Liang
J: DNA methylation of the CDC2L1 gene promoter region decreases the
expression of the CDK11p58 protein and reduces apoptosis in keloid
fibroblasts. Arch Dermatol Res. 310:107–115. 2018. View Article : Google Scholar
|
10
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma
JZ, Sun SH, Yang F and Zhou WP: Circular RNA cSMARCA5 inhibits
growth and metastasis in hepatocellular carcinoma. J Hepatol.
68:1214–1227. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yao J, Zhang C, Chen Y and Gao S:
Downregulation of circular RNA circ-LDLRAD3 suppresses pancreatic
cancer progression through miR-137-3p/PTN axis. Life Sci.
239:1168712019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Peng Y, Song X, Zheng Y, Cheng H and Lai
W: circCOL3A1- 859267 regulates type I collagen expression by
sponging miR-29c in human dermal fibroblasts. Eur J Dermatol.
28:613–620. 2018.PubMed/NCBI
|
14
|
Shi J, Yao S, Chen P, Yang Y, Qian M, Han
Y, Wang N, Zhao Y, He Y, Lyu L and Lu D: The integrative regulatory
network of circRNA and microRNA in keloid scarring. Mol Biol Rep.
47:201–209. 2020. View Article : Google Scholar
|
15
|
Zhang X, Wang S, Wang H, Cao J, Huang X,
Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1
acts as a microRNA-149-5p sponge to promote gastric cancer
progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Li M, Cai J, Han X and Ren Y:
Downregulation of circNRIP1 suppresses the paclitaxel resistance of
ovarian cancer via regulating the miR-211-5p/HOXC8 axis. Cancer
Manag Res. 12:9159–9171. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu G, Li M, Wu J, Qin C, Tao Y and He H:
Circular RNA circ- NRIP1 sponges microRNA-138-5p to maintain
hypoxia-induced resistance to 5-fluorouracil through
HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer
Manag Res. 12:2789–2802. 2020. View Article : Google Scholar :
|
18
|
Xie R, Tang J, Zhu X and Jiang H:
Silencing of hsa_circ_0004771 inhibits proliferation and induces
apoptosis in breast cancer through activation of miR-653 by
targeting ZEB2 signaling pathway. Biosci Rep. May 17–2019.Epub
ahead of print. View Article : Google Scholar
|
19
|
Wang L, Tong X, Zhou Z, Wang S, Lei Z,
Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA
hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced
epithelial-mesenchymal transition and metastasis by controlling
TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018.
View Article : Google Scholar
|
20
|
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z,
Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded
by a circular RNA circPPP1R12A promotes tumor pathogenesis and
metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer.
18:472019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang X, He M, Huang S, Lin R, Zhan M,
Yang D, Shen H, Xu S, Cheng W, Yu J, et al: Circular RNA circERBB2
promotes gallbladder cancer progression by regulating
PA2G4-dependent rDNA transcription. Mol Cancer. 18:1662019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang
Z and Yang BB: Induction of tumor apoptosis through a circular RNA
enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017.
View Article : Google Scholar :
|
23
|
Liang WC, Wong CW, Liang PP, Shi M, Cao Y,
Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM and Zhang JF: Translation
of the circular RNA circβ-catenin promotes liver cancer cell growth
through activation of the Wnt pathway. Genome Biol. 20:842019.
View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Hartmann P, Zhou Z, Natarelli L, Wei Y,
Nazari-Jahantigh M, Zhu M, Grommes J, Steffens S, Weber C and
Schober A: Endothelial Dicer promotes atherosclerosis and vascular
inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun.
7:105212016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Patop IL, Wüst S and Kadener S: Past,
present, and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu H, Wu S, Zhu Y, Ye M, Shen J, Liu Y,
Zhang Y and Bu S: Hsa_circRNA_0054633 is highly expressed in
gestational diabetes mellitus and closely related to glycosylation
index. Clin Epigenetics. 11:222019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang Z, Yu K, Liu O, Xiong Y, Yang X,
Wang S, Zhang S, Feng Y and Peng Y: Expression profile and
bioinformatics analyses of circular RNAs in keloid and normal
dermal fibroblasts. Exp Cell Res. 388:1117992020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu J, Yang M, Zhou B, Luo J, Zhang Z,
Zhang W and Yan Z: CircRNA-104718 acts as competing endogenous RNA
and promotes hepatocellular carcinoma progression through
microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond).
133:1487–1503. 2019. View Article : Google Scholar
|
30
|
Chen X, Ouyang Z, Shen Y, Liu B, Zhang Q,
Wan L, Yin Z, Zhu W, Li S and Peng D: CircRNA_28313/miR-195a/CSF1
axis modulates osteoclast differentiation to affect OVX-induced
bone absorption in mice. RNA Biol. 16:1249–1262. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu J, Ren J, Su L, Cheng S, Zhou J, Ye X,
Dong Y, Sun S, Qi F, Liu Z, et al: Human adipose tissue-derived
stem cells inhibit the activity of keloid fibroblasts and fibrosis
in a keloid model by paracrine signaling. Burns. 44:370–385. 2018.
View Article : Google Scholar
|
32
|
Andrews JP, Marttala J, Macarak E,
Rosenbloom J and Uitto J: Keloids: The paradigm of skin
fibrosis-pathomechanisms and treatment. Matrix Biol. 51:37–46.
2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jin J, Zhai HF, Jia ZH and Luo XH: Long
non-coding RNA HOXA11-AS induces type I collagen synthesis to
stimulate keloid formation via sponging miR-124-3p and activation
of Smad5 signaling. Am J Physiol Cell Physiol. 317:C1001–C1010.
2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dong W, Dai ZH, Liu FC, Guo XG, Ge CM,
Ding J, Liu H and Yang F: The RNA-binding protein RBM3 promotes
cell proliferation in hepatocellular carcinoma by regulating
circular RNA SCD-circRNA 2 production. EBioMedicine. 45:155–167.
2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang L, Long H, Zheng Q, Bo X, Xiao X and
Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma
progression by initiation of NR2F6 expression. Mol Cancer.
18:1192019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun S, Wang W, Luo X, Li Y, Liu B and Li
X, Zhang B, Han S and Li X: Circular RNA circ-ADD3 inhibits
hepatocellular carcinoma metastasis through facilitating EZH2
degradation via CDK1-mediated ubiquitination. Am J Cancer Res.
9:1695–1707. 2019.PubMed/NCBI
|
37
|
Cao S, Zheng J, Liu X, Liu Y, Ruan X, Ma
J, Liu L, Wang D, Yang C, Cai H, et al: FXR1 promotes the malignant
biological behavior of glioma cells via stabilizing MIR17HG. J Exp
Clin Cancer Res. 38:372019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang S, Li X, Zheng H, Si X, Li B, Wei G,
Li C, Chen Y, Chen Y, Liao W, et al: Loss of
super-enhancer-regulated circRNA Nfix induces cardiac regeneration
after myocardial infarction in adult mice. Circulation.
139:2857–2876. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zang J, Lu D and Xu A: The interaction of
circRNAs and RNA binding proteins: An important part of circRNA
maintenance and function. J Neurosci Res. 98:87–97. 2020.
View Article : Google Scholar
|
40
|
Qie S, Majumder M, Mackiewicz K, Howley
BV, Peterson YK, Howe PH, Palanisamy V and Diehl JA: Fbxo4-mediated
degradation of Fxr1 suppresses tumorigenesis in head and neck
squamous cell carcinoma. Nat Commun. 8:15342017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fan Y, Yue J, Xiao M, Han-Zhang H, Wang
YV, Ma C, Deng Z, Li Y, Yu Y, Wang X, et al: FXR1 regulates
transcription and is required for growth of human cancer cells with
TP53/FXR2 homozygous deletion. Elife. 6:e261292017. View Article : Google Scholar :
|
42
|
Cao H, Gao R, Yu C, Chen L and Feng Y: The
RNA-binding protein FXR1 modulates prostate cancer progression by
regulating FBXO4. Funct Integr Genomics. 19:487–496. 2019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Majumder M and Palanisamy V: RNA binding
protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in
oral cancer. PLoS Genet. 16:e10085802020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xu XL, Zong R, Li Z, Biswas MH, Fang Z,
Nelson DL and Gao FB: FXR1P but not FMRP regulates the levels of
mammalian brain-specific microRNA-9 and microRNA-124. J Neurosci.
31:13705–13709. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Vasudevan S and Steitz JA:
AU-rich-element-mediated upregulation of translation by FXR1 and
Argonaute 2. Cell. 128:1105–1118. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhong L, Bian L, Lyu J, Jin H, Liu Z, Lyu
L and Lu D: Identification and integrated analysis of microRNA
expression profiles in keloid. J Cosmet Dermatol. 17:917–924. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhao Z, Fan X, Jiang L, Xu Z, Xue L, Zhan
Q and Song Y: miR-503-3p promotes epithelial-mesenchymal transition
in breast cancer by directly targeting SMAD2 and E-cadherin. J
Genet Genomics. 44:75–84. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jiang SP and Li ZR: MiR-503-5p regulates
cell epithelial-to-mesenchymal transition, metastasis and prognosis
of hepatocellular carcinoma through inhibiting WEE1. Eur Rev Med
Pharmacol Sci. 23:2028–2037. 2019.PubMed/NCBI
|
49
|
Jee YH, Wang J, Yue S, Jennings M, Clokie
SJ, Nilsson O, Lui JC and Baron J: mir-374-5p, mir-379-5p, and
mir-503-5p regulate proliferation and hypertrophic differentiation
of growth plate chondrocytes in male rats. Endocrinology.
159:1469–1478. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fu Y, Meng Y, Gu X, Tian S, Hou X and Ji
M: miR-503 expression is downregulated in cervical cancer and
suppresses tumor growth by targeting AKT2. J Cell Biochem. Jan
29–2019.Epub ahead of print. View Article : Google Scholar
|
51
|
Cai X, Nie J, Chen L and Yu F:
Circ_0000267 promotes gastric cancer progression via sponging
MiR-503-5p and regulating HMGA2 expression. Mol Genet Genomic Med.
8:e10932020. View Article : Google Scholar
|
52
|
Sun Y, Li L, Xing S, Pan Y, Shi Y, Zhang L
and Shen Q: miR-503-3p induces apoptosis of lung cancer cells by
regulating p21 and CDK4 expression. Cancer Biomark. 20:597–608.
2017. View Article : Google Scholar : PubMed/NCBI
|