Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review)
- Authors:
- Jessica Yuen Wuen Ma
- Ying Hon Sze
- Jing Fang Bian
- Thomas Chuen Lam
-
Affiliations: Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, P.R. China - Published online on: March 18, 2021 https://doi.org/10.3892/ijmm.2021.4916
- Article Number: 83
-
Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dogru M, Okada N, Asano-Kato N, Tanaka M, Igarashi A, Takano Y, Fukagawa K, Shimazaki J, Tsubota K and Fujishima H: Atopic ocular surface disease: Implications on tear function and ocular surface mucins. Cornea. 24(8 Suppl): S18–S23. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gipson IK: The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Invest Ophthalmol Vis Sci. 48:4390–4398. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miano F, Mazzone M, Giannetto A, Enea V, Mc Cauley P, Bailey A and Winlove PC: Interface properties of simplified tear-like fluids in relation to lipid and aqueous layers composition. Adv Exp Med Biol. 506:405–417. 2002. View Article : Google Scholar | |
King-Smith PE, Bailey MD and Braun RJ: Four characteristics and a model of an effective tear film lipid layer (TFLL). Ocul Surf. 11:236–245. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kijlstra A and Kuizenga A: Analysis and function of the human tear proteins. Adv Exp Med Biol. 350:299–308. 1994. View Article : Google Scholar : PubMed/NCBI | |
Esmaeelpour M, Watts PO, Boulton ME, Cai J and Murphy PJ: Tear film volume and protein analysis in full-term newborn infants. Cornea. 30:400–404. 2011. View Article : Google Scholar | |
Sack RA, Sathe S and Beaton A: Tear turnover and immune and inflammatory processes in the open-eye and closed-eye environments: Relationship to extended wear contact lens use. Eye Contact Lens. 29(Suppl 1): S80–S84. S192–S194. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY and Pflugfelder SC: Autoimmunity at the ocular surface: Pathogenesis and regulation. Mucosal Immunol. 3:425–442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schicht M, Garreis F, Hartjen N, Beileke S, Jacobi C, Sahin A, Holland D, Schröder H, Hammer CM, Paulsen F and Bräuer L: SFTA3-a novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension. Sci Rep. 8:97912018. View Article : Google Scholar | |
Kwong MS, Evans DJ, Ni M, Cowell BA and Fleiszig SM: Human tear fluid protects against Pseudomonas aeruginosa keratitis in a murine experimental model. Infect Immun. 75:2325–2332. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou L and Beuerman RW: The power of tears: How tear proteomics research could revolutionize the clinic. Expert Rev Proteomics. 14:189–191. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hagan S, Martin E and Enriquez-de-Salamanca A: Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 7:152016. View Article : Google Scholar : PubMed/NCBI | |
Gachon AM and Lacazette E: Tear lipocalin and the eye's front line of defence. Br J Ophthalmol. 82:453–455. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kuizenga A, van Haeringen NJ and Kijlstra A: Identification of lectin binding proteins in human tears. Invest Ophthalmol Vis Sci. 32:3277–3284. 1991.PubMed/NCBI | |
Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR and Beuerman RW: In-depth analysis of the human tear proteome. J Proteomics. 75:3877–3885. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mishima S, Gasset A, Klyce SD Jr and Baum JL: Determination of tear volume and tear flow. Invest Ophthalmol. 5:264–276. 1966.PubMed/NCBI | |
Rentka A, Koroskenyi K, Harsfalvi J, Szekanecz Z, Szucs G, Szodoray P and Kemeny-Beke A: Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann Clin Biochem. 54:521–529. 2017. View Article : Google Scholar : PubMed/NCBI | |
Esmaeelpour M, Cai J, Watts P, Boulton M and Murphy PJ: Tear sample collection using cellulose acetate absorbent filters. Ophthalmic Physiol Opt. 28:577–583. 2008. View Article : Google Scholar : PubMed/NCBI | |
Inic-Kanada A, Nussbaumer A, Montanaro J, Belij S, Schlacher S, Stein E, Bintner N, Merio M, Zlabinger GJ and Barisani-Asenbauer T: Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol Vis. 18:2717–2725. 2012.PubMed/NCBI | |
López-Cisternas J, Castillo-Diaz J, Traipe-Castro L and López-Solis RO: Use of polyurethane minisponges to collect human tear fluid. Cornea. 25:312–318. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rohan LC, Edwards RP, Kelly LA, Colenello KA, Bowman FP and Crowley-Nowick PA: Optimization of the weck-Cel collection method for quantitation of cytokines in mucosal secretions. Clin Diagn Lab Immunol. 7:45–48. 2000. View Article : Google Scholar : PubMed/NCBI | |
Posa A, Bräuer L, Schicht M, Garreis F, Beileke S and Paulsen F: Schirmer strip vs capillary tube method: Non-invasive methods of obtaining proteins from tear fluid. Ann Anat. 195:137–142. 2013. View Article : Google Scholar : PubMed/NCBI | |
VanDerMeid KR, Su SP, Krenzer KL, Ward KW and Zhang JZ: A method to extract cytokines and matrix metalloproteinases from Schirmer strips and analyze using Luminex. Mol Vis. 17:1056–1063. 2011.PubMed/NCBI | |
Nättinen J, Aapola U, Jylhä A, Vaajanen A and Uusitalo H: Comparison of capillary and Schirmer strip tear fluid sampling methods using SWATH-MS proteomics approach. Transl Vis Sci Technol. 9:162020. View Article : Google Scholar : PubMed/NCBI | |
Stuchell RN, Feldman JJ, Farris RL and Mandel ID: The effect of collection technique on tear composition. Invest Ophthalmol Vis Sci. 25:374–377. 1984.PubMed/NCBI | |
Denisin AK, Karns K and Herr AE: Post-collection processing of Schirmer strip-collected human tear fluid impacts protein content. Analyst. 137:5088–5096. 2012. View Article : Google Scholar : PubMed/NCBI | |
van Haeringen NJ and Glasius E: The origin of some enzymes in tear fluid, determined by comparative investigation with two collection methods. Exp Eye Res. 22:267–272. 1976. View Article : Google Scholar : PubMed/NCBI | |
Zhou L and Beuerman RW: Tear analysis in ocular surface diseases. Prog Retin Eye Res. 31:527–550. 2012. View Article : Google Scholar : PubMed/NCBI | |
Castelli S, Arasi S, Pawankar R and Matricardi PM: Collection of nasal secretions and tears and their use in allergology. Curr Opin Allergy Clin Immunol. 18:1–9. 2018. View Article : Google Scholar | |
Leonardi A: Allergy and allergic mediators in tears. Exp Eye Res. 117:106–117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Green-Church KB, Nichols KK, Kleinholz NM, Zhang L and Nichols JJ: Investigation of the human tear film proteome using multiple proteomic approaches. Mol Vis. 14:456–470. 2008.PubMed/NCBI | |
Kojima T, Dogru M, Kawashima M, Nakamura S and Tsubota K: Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res. Jan 29–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Mainstone JC, Bruce AS and Golding TR: Tear meniscus measurement in the diagnosis of dry eye. Curr Eye Res. 15:653–661. 1996. View Article : Google Scholar : PubMed/NCBI | |
Altelaar AF, Munoz J and Heck AJ: Next-generation proteomics: Towards an integrative view of proteome dynamics. Nat Rev Genet. 14:35–48. 2013. View Article : Google Scholar | |
Schubert OT, Röst HL, Collins BC, Rosenberger G and Aebersold R: Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat Protoc. 12:1289–1294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Jensen ON: Modification-specific proteomics: Strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 9:4632–4641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang N, Zheng J, Liu XM, Lever OW, Erickson PM and Li L: Characterization of human tear proteome using multiple proteomic analysis techniques. J Proteome Res. 4:2052–2061. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R and Aebersold R: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 11:O111.0167172012. View Article : Google Scholar : PubMed/NCBI | |
Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 8:2912017. View Article : Google Scholar : PubMed/NCBI | |
Molloy MP: The challenge of industrializing proteomics. Nat Biotechnol. 21:5972003. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan S, Thangavelu M, Zhang L, Green KB and Nichols KK: iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci. 53:5052–5059. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Liu J, Wasinger VC, Malouf T, Nguyen-Khuong T, Walsh B and Willcox MD: Tear lipocalin is the predominant phosphoprotein in human tear fluid. Exp Eye Res. 90:344–349. 2010. View Article : Google Scholar | |
You J, Fitzgerald A, Cozzi PJ, Zhao Z, Graham P, Russell PJ, Walsh BJ, Willcox M, Zhong L, Wasinger V and Li Y: Post-translation modification of proteins in tears. Electrophoresis. 31:1853–1861. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Du CX and Pan XD: The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS One. 13:e02007022018. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Khuong T, Everest-Dass AV, Kautto L, Zhao Z, Willcox MD and Packer NH: Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology. 25:269–283. 2015. View Article : Google Scholar | |
Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, Lokamani I, Yaoita E and Yamamoto T: Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics. 11:162014. View Article : Google Scholar | |
Broekhuyse RM: Tear lactoferrin: A bacteriostatic and complexing protein. Invest Ophthalmol. 13:550–554. 1974.PubMed/NCBI | |
Berta A: A polyacrylamide-gel electrophoretic study of human tear proteins. Graefes Arch Clin Exp Ophthalmol. 219:95–99. 1982. View Article : Google Scholar : PubMed/NCBI | |
Molloy MP, Bolis S, Herbert BR, Ou K, Tyler MI, van Dyk DD, Willcox MD, Gooley AA, Williams KL, Morris CA and Walsh BJ: Establishment of the human reflex tear two-dimensional polyacrylamide gel electrophoresis reference map: New proteins of potential diagnostic value. Electrophoresis. 18:2811–2815. 1997. View Article : Google Scholar | |
Perumal N, Funke S, Wolters D, Pfeiffer N and Grus FH: Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics. 15:3370–3381. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ladner CL, Yang J, Turner RJ and Edwards RA: Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem. 326:13–20. 2004. View Article : Google Scholar : PubMed/NCBI | |
Williams JG and Gratzer WB: Limitations of the detergent-polyacrylamide gel electrophoresis method for molecular weight determination of proteins. J Chromatogr. 57:121–125. 1971. View Article : Google Scholar : PubMed/NCBI | |
Corthals GL, Wasinger VC, Hochstrasser DF and Sanchez JC: The dynamic range of protein expression: A challenge for proteomic research. Electrophoresis. 21:1104–1115. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gygi SP, Corthals GL, Zhang Y, Rochon Y and Aebersold R: Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA. 97:9390–9395. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Xiang R, Horvath C and Wilkins JA: The role of liquid chromatography in proteomics. J Chromatogr A. 1053:27–36. 2004. View Article : Google Scholar : PubMed/NCBI | |
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI | |
Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S and Mann M: Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 7:5482011. View Article : Google Scholar : PubMed/NCBI | |
Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D and Mann M: Plasma proteome profiling to assess human health and disease. Cell Syst. 2:185–195. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nättinen J, Jylhä A, Aapola U, Mäkinen P, Beuerman R, Pietilä J, Vaajanen A and Uusitalo H: Age-associated changes in human tear proteome. Clin Proteomics. 16:112019. View Article : Google Scholar : PubMed/NCBI | |
Gilar M and Neue UD: Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. J Chromatogr A. 1169:139–150. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Zhao R, Belov ME, Conrads TP, Anderson GA, Tang K, Pasa-Tolić L, Veenstra TD, Lipton MS, Udseth HR and Smith RD: Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal Chem. 73:1766–1775. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hsieh EJ, Bereman MS, Durand S, Valaskovic GA and MacCoss MJ: Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. J Am Soc Mass Spectrom. 24:148–153. 2013. View Article : Google Scholar : | |
Doerr A: Mass spectrometry-based targeted proteomics. Nat Methods. 10:232013. View Article : Google Scholar : PubMed/NCBI | |
Carapito C and Aebersold R: Targeted proteomics. Proteomics. 12:10732012. View Article : Google Scholar : PubMed/NCBI | |
Borrebaeck CA: Precision diagnostics: Moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 17:199–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z: An in vitro diagnostic multivariate index assay (IVDMIA) for ovarian cancer: Harvesting the power of multiple biomarkers. Rev Obstet Gynecol. 5:35–41. 2012.PubMed/NCBI | |
Ueland FR, Desimone CP, Seamon LG, Miller RA, Goodrich S, Podzielinski I, Sokoll L, Smith A, van Nagell JR Jr and Zhang Z: Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet Gynecol. 117:1289–1297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Janssen PT and van Bijsterveld OP: Origin and biosynthesis of human tear fluid proteins. Invest Ophthalmol Vis Sci. 24:623–630. 1983.PubMed/NCBI | |
Tsai PS, Evans JE, Green KM, Sullivan RM, Schaumberg DA, Richards SM, Dana MR and Sullivan DA: Proteomic analysis of human meibomian gland secretions. Br J Ophthalmol. 90:372–377. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gipson IK: Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res. 54:49–63. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Souza GA, Godoy LM and Mann M: Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 7:R722006. View Article : Google Scholar : PubMed/NCBI | |
Ananthi S, Santhosh RS, Nila MV, Prajna NV, Lalitha P and Dharmalingam K: Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res. 92:454–463. 2011. View Article : Google Scholar : PubMed/NCBI | |
Seamon V, Vellala K, Zylberberg C, Ponamareva O and Azzarolo AM: Sex hormone regulation of tear lipocalin in the rabbit lacrimal gland. Exp Eye Res. 87:184–190. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Zhou XY, Jylha A, Aapola U, Liu DN, Koh SK, Tian D, Quah J, Uusitalo H, Beuerman RW and Zhou L: Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry. J Proteomics. 115:36–48. 2015. View Article : Google Scholar | |
Aass C, Norheim I, Eriksen EF, Thorsby PM and Pepaj M: Single unit filter-aided method for fast proteomic analysis of tear fluid. Anal Biochem. 480:1–5. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zubarev RA and Makarov A: Orbitrap mass spectrometry. Anal Chem. 85:5288–5296. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perry RH, Cooks RG and Noll RJ: Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrom Rev. 27:661–699. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dor M, Eperon S, Lalive PH, Guex-Crosier Y, Hamedani M, Salvisberg C and Turck N: Investigation of the global protein content from healthy human tears. Exp Eye Res. 179:64–74. 2019. View Article : Google Scholar | |
Shamsi FA, Chen Z, Liang J, Li K, Al-Rajhi AA, Chaudhry IA, Li M and Wu K: Analysis and comparison of proteomic profiles of tear fluid from human, cow, sheep, and camel eyes. Invest Ophthalmol Vis Sci. 52:9156–9165. 2011. View Article : Google Scholar : PubMed/NCBI | |
The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye WorkShop (2007). Ocul Surf. 5:75–92. 2007. View Article : Google Scholar : PubMed/NCBI | |
Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, Liu Z, Nelson JD, Nichols JJ, Tsubota K and Stapleton F: TFOS DEWS II definition and classification report. Ocul Surf. 15:276–283. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shimazaki J: Definition and diagnostic criteria of dry eye disease: Historical overview and future directions. Invest Ophthalmol Vis Sci. 59:DES7–DES12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abelson MB, Ousler GW III, Nally LA, Welch D and Krenzer K: Alternative reference values for tear film break up time in normal and dry eye populations. Adv Exp Med Biol. 506:1121–1125. 2002. View Article : Google Scholar | |
Senchyna M and Wax MB: Quantitative assessment of tear production: A review of methods and utility in dry eye drug discovery. J Ocul Biol Dis Infor. 1:1–6. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nichols KK, Mitchell GL and Zadnik K: The repeatability of clinical measurements of dry eye. Cornea. 23:272–285. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang JF, Zhang Y, Rittenhouse KD, Pickering EH and McDowell MT: Evaluations of tear protein markers in dry eye disease: Repeatability of measurement and correlation with disease. Invest Ophthalmol Vis Sci. 53:4556–4564. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H, Tong L, Liu S, Stern ME and Tan D: Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 8:4889–4905. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ryckman C, Vandal K, Rouleau P, Talbot M and Tessier PA: Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol. 170:3233–3242. 2003. View Article : Google Scholar : PubMed/NCBI | |
Danjo Y, Lee M, Horimoto K and Hamano T: Ocular surface damage and tear lactoferrin in dry eye syndrome. Acta Ophthalmol (Copenh). 72:433–437. 1994. View Article : Google Scholar | |
Breustedt DA, Schönfeld DL and Skerra A: Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta. 1764:161–173. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Zhou L, Beuerman RW, Zhao SZ and Li XR: Association of tear proteins with meibomian gland disease and dry eye symptoms. Br J Ophthalmol. 95:848–852. 2011. View Article : Google Scholar | |
Foell D, Wittkowski H, Ren Z, Turton J, Pang G, Daebritz J, Ehrchen J, Heidemann J, Borody T, Roth J and Clancy R: Phagocyte-specific S100 proteins are released from affected mucosa and promote immune responses during inflammatory bowel disease. J Pathol. 216:183–192. 2008. View Article : Google Scholar : PubMed/NCBI | |
Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M, Roda A and Campos EC: Tear proteomics in evaporative dry eye disease. Eye (Lond). 24:1396–1402. 2010. View Article : Google Scholar | |
Fukuda M, Fullard RJ, Willcox MD, Baleriola-Lucas C, Bestawros F, Sweeney D and Holden BA: Fibronectin in the tear film. Invest Ophthalmol Vis Sci. 37:459–467. 1996.PubMed/NCBI | |
Perumal N, Funke S, Pfeiffer N and Grus FH: Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep. 6:296292016. View Article : Google Scholar : PubMed/NCBI | |
Ligtenberg AJ, Veerman EC, Nieuw Amerongen AV and Mollenhauer J: Salivary agglutinin/glycoprotein-340/DMBT1: A single molecule with variable composition and with different functions in infection, inflammation and cancer. Biol Chem. 388:1275–1289. 2007. View Article : Google Scholar : PubMed/NCBI | |
Boucher Y, Braud A, Dufour E, Agbo-Godeau S, Baaroun V, Descroix V, Guinnepain MT, Ungeheuer MN, Ottone C and Rougeot C: Opiorphin levels in fluids of burning mouth syndrome patients: A case-control study. Clin Oral Investig. 21:2157–2164. 2017. View Article : Google Scholar | |
Pappa A, Chen C, Koutalos Y, Townsend AJ and Vasiliou V: Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med. 34:1178–1189. 2003. View Article : Google Scholar : PubMed/NCBI | |
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, et al: Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep. 7:174782017. View Article : Google Scholar : PubMed/NCBI | |
Messmer EM, von Lindenfels V, Garbe A and Kampik A: Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology. 123:2300–2308. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jonsson R, Vogelsang P, Volchenkov R, Espinosa A, Wahren-Herlenius M and Appel S: The complexity of Sjogren's syndrome: Novel aspects on pathogenesis. Immunol Lett. 141:1–9. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kuo MT, Fang PC, Chao TL, Chen A, Lai YH, Huang YT and Tseng CY: Tear proteomics approach to monitoring sjogren syndrome or dry eye disease. Int J Mol Sci. 20:19322019. View Article : Google Scholar | |
Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, Young A, Guerreiro EM, Utheim TP, Chen X, et al: Identification of potential saliva and tear biomarkers in primary Sjögren's syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res Ther. 19:142017. View Article : Google Scholar | |
Aqrawi LA, Galtung HK, Guerreiro EM, Øvstebø R, Thiede B, Utheim TP, Chen X, Utheim ØA, Palm Ø, Skarstein K and Jensen JL: Proteomic and histopathological characterisation of sicca subjects and primary Sjögren's syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers. Arthritis Res Ther. 21:1812019. View Article : Google Scholar | |
Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, Yu SJ, Koh SK and Beuerman RW: Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci. 52:7385–7391. 2011. View Article : Google Scholar : PubMed/NCBI | |
Csősz É, Deák E, Kalló G, Csutak A and Tőzsér J: Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteomics. 150:351–358. 2017. View Article : Google Scholar | |
Csősz É, Boross P, Csutak A, Berta A, Tóth F, Póliska S, Török Z and Tőzsér J: Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics. 75:2196–2204. 2012. View Article : Google Scholar | |
Zhou X, Qu J, Xie R, Wang R, Jiang L, Zhao H, Wen J and Lu F: Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res. 46:2815–2823. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bartalena L and Fatourechi V: Extrathyroidal manifestations of Graves' disease: A 2014 update. J Endocrinol Invest. 37:691–700. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lehmann GM, Garcia-Bates TM, Smith TJ, Feldon SE and Phipps RP: Regulation of lymphocyte function by PPARgamma: Relevance to thyroid eye disease-related inflammation. PPAR Res. 2008:8959012008. View Article : Google Scholar : PubMed/NCBI | |
Mourits MP, Prummel MF, Wiersinga WM and Koornneef L: Clinical activity score as a guide in the management of patients with Graves' ophthalmopathy. Clin Endocrinol (Oxf). 47:9–14. 1997. View Article : Google Scholar | |
Turck N, Eperon S, De Los Angeles Gracia M, Obéric A and Hamédani M: Thyroid-associated orbitopathy and biomarkers: Where we are and what we can hope for the future. Dis Markers. 2018:70101962018. View Article : Google Scholar : PubMed/NCBI | |
Chelala E, El Rami H, Dirani A, Fakhoury H and Fadlallah A: Extensive superior limbic keratoconjunctivitis in Graves' disease: Case report and mini-review of the literature. Clin Ophthalmol. 9:467–468. 2015.PubMed/NCBI | |
Matheis N, Okrojek R, Grus FH and Kahaly GJ: Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid. 22:1039–1045. 2012. View Article : Google Scholar : PubMed/NCBI | |
Torsteinsdóttir I, Hâkansson L, Hällgren R, Gudbjörnsson B, Arvidson NG and Venge P: Serum lysozyme: A potential marker of monocyte/macrophage activity in rheumatoid arthritis. Rheumatology (Oxford). 38:1249–1254. 1999. View Article : Google Scholar | |
Barrett AJ: The cystatins: Small protein inhibitors of cysteine proteinases. Prog Clin Biol Res. 180:105–116. 1985.PubMed/NCBI | |
Matheis N, Grus FH, Breitenfeld M, Knych I, Funke S, Pitz S, Ponto KA, Pfeiffer N and Kahaly GJ: Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest Ophthalmol Vis Sci. 56:2649–2656. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wiesner J and Vilcinskas A: Antimicrobial peptides: The ancient arm of the human immune system. Virulence. 1:440–464. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ozyildirim AM, Wistow GJ, Gao J, Wang J, Dickinson DP, Frierson HF Jr and Laurie GW: The lacrimal gland transcriptome is an unusually rich source of rare and poorly characterized gene transcripts. Invest Ophthalmol Vis Sci. 46:1572–1580. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barka T, Asbell PA, van der Noen H and Prasad A: Cystatins in human tear fluid. Curr Eye Res. 10:25–34. 1991. View Article : Google Scholar : PubMed/NCBI | |
Turcu AF, Kumar S, Neumann S, Coenen M, Iyer S, Chiriboga P, Gershengorn MC and Bahn RS: A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab. 98:2153–2159. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aass C, Norheim I, Eriksen EF, Børnick EC, Thorsby PM and Pepaj M: Comparative proteomic analysis of tear fluid in Graves' disease with and without orbitopathy. Clin Endocrinol (Oxf). 85:805–812. 2016. View Article : Google Scholar | |
McIntosh RS, Cade JE, Al-Abed M, Shanmuganathan V, Gupta R, Bhan A, Tighe PJ and Dua HS: The spectrum of antimicrobial peptide expression at the ocular surface. Invest Ophthalmol Vis Sci. 46:1379–1385. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wei YH, Chen WL, Hu FR and Liao SL: In vivo confocal microscopy of bulbar conjunctiva in patients with Graves' ophthalmopathy. J Formos Med Assoc. 114:965–972. 2015. View Article : Google Scholar | |
Kishazi E, Dor M, Eperon S, Oberic A, Hamedani M and Turck N: Thyroid-associated orbitopathy and tears: A proteomics study. J Proteomics. 170:110–116. 2018. View Article : Google Scholar | |
Paraoan L, Grierson I and Maden BE: Analysis of expressed sequence tags of retinal pigment epithelium: Cystatin C is an abundant transcript. Int J Biochem Cell Biol. 32:417–426. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yoshida A, Hsu LC and Dave V: Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme. 46:239–244. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sahu B and Maeda A: Retinol dehydrogenases regulate vitamin A metabolism for visual function. Nutrients. 8:7462016. View Article : Google Scholar : | |
Weinreb RN, Aung T and Medeiros FA: The pathophysiology and treatment of glaucoma: A review. JAMA. 311:1901–1911. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bourne RR, Taylor HR, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Pesudovs K, White RA, Wong TY, Resnikoff S, et al: Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990-2010: A meta-analysis. PLoS One. 11:e01622292016. View Article : Google Scholar | |
Harwerth RS and Quigley HA: Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 124:853–859. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rahmani B, Tielsch JM, Katz J, Gottsch J, Quigley H, Javitt J and Sommer A: The cause-specific prevalence of visual impairment in an urban population. The baltimore eye survey. Ophthalmology. 103:1721–1726. 1996. View Article : Google Scholar : PubMed/NCBI | |
Braunger BM, Fuchshofer R and Tamm ER: The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm. 95:173–181. 2015. View Article : Google Scholar : PubMed/NCBI | |
Elhawy E, Kamthan G, Dong CQ and Danias J: Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics. 6:222012. View Article : Google Scholar : PubMed/NCBI | |
Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL and Martin KR: Primary open-angle glaucoma. Nat Rev Dis Primers. 2:160672016. View Article : Google Scholar : PubMed/NCBI | |
Pieragostino D, Bucci S, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua A, Ciancaglini M, Mastropasqua L, Di Ilio C, Sacchetta P, et al: Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. Mol Biosyst. 8:1017–1028. 2012. View Article : Google Scholar | |
Pieragostino D, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua R, Di Ilio C, Sacchetta P, Urbani A and Del Boccio P: Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol Biosyst. 9:1108–1116. 2013. View Article : Google Scholar : PubMed/NCBI |