The potential role of necroptosis in clinical diseases (Review)
- Authors:
- Wenli Dai
- Jin Cheng
- Xi Leng
- Xiaoqing Hu
- Yingfang Ao
-
Affiliations: Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China, Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China - Published online on: March 26, 2021 https://doi.org/10.3892/ijmm.2021.4922
- Article Number: 89
-
Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al: Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19:107–120. 2012. View Article : Google Scholar : | |
Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J and Chan FK: The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity. 41:567–578. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 1:489–495. 2000. View Article : Google Scholar | |
He S, Wang L, Miao L, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N and Vandenabeele P: Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol. 35:2–13. 2014. View Article : Google Scholar : PubMed/NCBI | |
Upton JW, Kaiser WJ and Mocarski ES: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oberst A and Green DR: It cuts both ways: Reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol. 12:757–763. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T and Mocarski ES: RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471:368–372. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar | |
Sun X, Yin J, Starovasnik MA, Fairbrother WJ and Dixit VM: Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem. 277:9505–9511. 2002. View Article : Google Scholar | |
Sun X, Lee J, Navas T, Baldwin DT, Stewart TA and Dixit VM: RIP3, a novel apoptosis-inducing kinase. J Biol Chem. 274:16871–16875. 1999. View Article : Google Scholar : PubMed/NCBI | |
Shan B, Pan H, Najafov A and Yuan J: Necroptosis in development and diseases. Genes Dev. 32:327–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dillon CP, Tummers B, Baran K and Green DR: Developmental checkpoints guarded by regulated necrosis. Cell Mol Life Sci. 73:2125–2136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hacker G: The morphology of apoptosis. Cell Tissue Res. 301:5–17. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ch'en IL, Tsau JS, Molkentin JD, Komatsu M and Hedrick SM: Mechanisms of necroptosis in T cells. J Exp Med. 208:633–641. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J and Zheng L: Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol. 17:221–253. 1999. View Article : Google Scholar | |
Chen D, Yu J and Zhang L: Necroptosis: An alternative cell death program defending against cancer. Biochim Biophys Acta. 1865:228–236. 2016.PubMed/NCBI | |
He S, Huang S and Shen Z: Biomarkers for the detection of necroptosis. Cell Mol Life Sci. 73:2177–2181. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI | |
Dong K, Zhu H, Song Z, Gong Y, Wang F, Wang W, Zheng Z, Yu Z, Gu Q, Xu X and Sun X: Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment. Am J Pathol. 181:1634–1641. 2012. View Article : Google Scholar : PubMed/NCBI | |
McQuade T, Cho Y and Chan FK: Positive and negative phosphorylation regulates RIP1- and RIP3-induced programmed necrosis. Biochem J. 456:409–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS and Wang X: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 54:133–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li JX, Feng JM, Wang Y, Li XH, Chen XX, Su Y, Shen YY, Chen Y, Xiong B, Yang CH, et al: The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis. 5:e12782014. View Article : Google Scholar : PubMed/NCBI | |
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Conrad M, Angeli JP, Vandenabeele P and Stockwell BR: Regulated necrosis: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 15:348–366. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, et al: RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 513:90–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T, Gonçalves A, Sze M, Gilbert B, Kourula S, et al: RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature. 513:95–99. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF and Becker C: Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature. 477:335–339. 2011. View Article : Google Scholar | |
Wong WW, Vince JE, Lalaoui N, Lawlor KE, Chau D, Bankovacki A, Anderton H, Metcalf D, O'Reilly L, Jost PJ, et al: cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood. 123:2562–2572. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roderick JE, Hermance N, Zelic M, Simmons MJ, Polykratis A, Pasparakis M and Kelliher MA: Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc Natl Acad Sci USA. 111:14436–14441. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, et al: RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 157:1175–1188. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, et al: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 157:1189–1202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka Y and Tsujimoto Y: Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death. Genes Cells. 20:11–28. 2015. View Article : Google Scholar | |
Huang Z, Wu SQ, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, et al: RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe. 17:229–242. 2015. View Article : Google Scholar : PubMed/NCBI | |
Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ and Mocarski ES: Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem. 290:11635–11648. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH III, Ingram JP, Rodriguez DA, Kosoff R, Sharma S, Sturm O, et al: RIPK3 activates parallel pathways of MLKL-Driven necroptosis and FADD-Mediated apoptosis to protect against influenza a virus. Cell Host Microbe. 20:13–24. 2016. View Article : Google Scholar : | |
Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, et al: A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature. 501:247–251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X, et al: Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature. 501:242–246. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, et al: Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA. 111:7391–7396. 2014. View Article : Google Scholar : PubMed/NCBI | |
Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA, Zwack EE, Hu B, Fitzgerald L, Mauldin EA, Copenhaver AM, et al: Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci USA. 111:7385–7390. 2014. View Article : Google Scholar | |
Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L and Sad S: Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol. 13:954–962. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bleriot C and Lecuit M: The interplay between regulated necrosis and bacterial infection. Cell Mol Life Sci. 73:2369–2378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu GQ, Yang YJ, Qin XX, Qi S, Zhang J, Yu SX, Du CT and Chen W: Salmonella outer protein B suppresses colitis development via protecting cell from necroptosis. Front Cell Infect Microbiol. 9:872019. View Article : Google Scholar : | |
Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, Souto-Padron T, De Rosa MJ, Kelliher M, Golenbock D, et al: Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 119:2368–2375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Liu M, Ren C, Shen J and Ji Y: Exogenous tumor necrosis factor-alpha could induce egress of Toxoplasma gondii from human foreskin fibroblast cells. Parasite. 24:452017. View Article : Google Scholar | |
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R and Wang Y: RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med. 44:771–786. 2019.PubMed/NCBI | |
Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, et al: Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25:707–725. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L and Kroemer G: Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology. 6:e12993022017. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Song Q, Yu A, Tang H, Peng Z and Wang X: Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma. 62:592–601. 2015. View Article : Google Scholar | |
Moriwaki K, Bertin J, Gough PJ, Orlowski GM and Chan FK: Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6:e16362015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Guo J, Ding AP, Qi WW, Zhang PH, Lv J, Qiu WS and Sun ZQ: Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer. Technol Cancer Res Treat. 16:428–434. 2017. View Article : Google Scholar : | |
Nugues AL, El Bouazzati H, Hetuin D, Berthon C, Loyens A, Bertrand E, Jouy N, Idziorek T and Quesnel B: RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis. 5:e13842014. View Article : Google Scholar : PubMed/NCBI | |
Hockendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M, et al: RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell. 30:75–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Geserick P, Wang J, Schilling R, Horn S, Harris PA, Bertin J, Gough PJ, Feoktistova M and Leverkus M: Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6:e18842015. View Article : Google Scholar : PubMed/NCBI | |
Ke H, Augustine CK, Gandham VD, Jin JY, Tyler DS, Akiyama SK, Hall RP and Zhang JY: CYLD inhibits melanoma growth and progression through suppression of the JNK/AP-1 and beta1-integrin signaling pathways. J Invest Dermatol. 133:221–229. 2013. View Article : Google Scholar | |
McCormick KD, Ghosh A, Trivedi S, Wang L, Coyne CB, Ferris RL and Sarkar SN: Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis. 37:522–529. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ertao Z, Jianhui C, Kang W, Zhijun Y, Hui W, Chuangqi C, Changjiang Q, Sile C, Yulong H and Shirong C: Prognostic value of mixed lineage kinase domain-like protein expression in the survival of patients with gastric caner. Tumour Biol. 37:13679–13685. 2016. View Article : Google Scholar : PubMed/NCBI | |
He L, Peng K, Liu Y, Xiong J and Zhu FF: Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco Targets Ther. 6:1539–1543. 2013.PubMed/NCBI | |
Ruan J, Mei L, Zhu Q, Shi G and Wang H: Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int J Clin Exp Pathol. 8:15035–15038. 2015. | |
Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, Ramnarain DB, Xiao G, Saha D, Boothman DA, et al: The receptor interacting protein 1 inhibits p53 induction through NF-kappaB activation and confers a worse prognosis in glioblastoma. Cancer Res. 69:2809–2816. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Chen W, Xu X, Li B, He W, Padilla MT, Jang JH, Nyunoya T, Amin S, Wang X and Lin Y: RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species. Carcinogenesis. 34:2119–2128. 2013. View Article : Google Scholar : PubMed/NCBI | |
Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH, et al: The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 532:245–249. 2016. View Article : Google Scholar : PubMed/NCBI | |
Colbert LE, Fisher SB, Hardy CW, Hall WA, Saka B, Shelton JW, Petrova AV, Warren MD, Pantazides BG, Gandhi K, et al: Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer. 119:3148–3155. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cabal-Hierro L and O'Dwyer PJ: TNF signaling through RIP1 kinase enhances SN38-Induced death in colon adenocarcinoma. Mol Cancer Res. 15:395–404. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y and Zhou BP: Inflammation: A driving force speeds cancer metastasis. Cell Cycle. 8:3267–3273. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu ZY, Wu B, Guo YS, Zhou YH, Fu ZG, Xu BQ, Li JH, Jing L, Jiang JL, Tang J and Chen ZN: Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am J Cancer Res. 5:3174–3185. 2015.PubMed/NCBI | |
Exner N, Lutz AK, Haass C and Winklhofer KF: Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences. EMBO J. 31:3038–3062. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A, Morabito G, Caporali L, et al: Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson's disease models. Cell Rep. 22:2066–2079. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu JR, Wang J, Zhou SK, Yang L, Yin JL, Cao JP and Cheng YB: Necrostatin-1 protection of dopaminergic neurons. Neural Regen Res. 10:1120–1124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amin P, Florez M, Najafov A, Pan H, Geng J, Ofengeim D, Dziedzic SA, Wang H, Barrett VJ, Ito Y, et al: Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFalpha-mediated apoptosis. Proc Natl Acad Sci USA. 115:E5944–E5953. 2018. View Article : Google Scholar | |
Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, et al: Necroptosis activation in Alzheimer's disease. Nat Neurosci. 20:1236–1246. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X, Chen H, Zhu H, et al: RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci USA. 114:E8788–E8797. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, et al: RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 353:603–608. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, et al: Activation of necroptosis in multiple sclerosis. Cell Rep. 10:1836–1849. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Su Y, Ying Z, Guo D, Pan C, Guo J, Zou Z, Wang L, Zhang Z, Jiang Z, et al: RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proc Natl Acad Sci USA. 116:5675–5680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roychowdhury S, McCullough RL, Sanz-Garcia C, Saikia P, Alkhouri N, Matloob A, Pollard KA, McMullen MR, Croniger CM and Nagy LE: Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 64:1518–1533. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Du X, Liu G, Huang S, Du W, Zou S, Tang D, Fan C, Xie Y, Wei Y, et al: The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol Metab. 23:14–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saeed WK, Jun DW, Jang K, Ahn SB, Oh JH, Chae YJ, Lee JS and Kang HT: Mismatched effects of receptor interacting protein kinase-3 on hepatic steatosis and inflammation in non-alcoholic fatty liver disease. World J Gastroenterol. 24:5477–5490. 2018. View Article : Google Scholar | |
Gautheron J, Vucur M, Reisinger F, Cardenas DV, Roderburg C, Koppe C, Kreggenwinkel K, Schneider AT, Bartneck M, Neumann UP, et al: A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med. 6:1062–1074. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gautheron J, Vucur M, Schneider AT, Severi I, Roderburg C, Roy S, Bartneck M, Schrammen P, Diaz MB, Ehling J, et al: The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 7:118692016. View Article : Google Scholar : PubMed/NCBI | |
Afonso MB, Rodrigues PM, Carvalho T, Caridade M, Borralho P, Cortez-Pinto H, Castro RE and Rodrigues CM: Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond). 129:721–739. 2015. View Article : Google Scholar | |
Roychowdhury S, McMullen MR, Pisano SG, Liu X and Nagy LE: Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology. 57:1773–1783. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Ni HM, Dorko K, Kumer SC, Schmitt TM, Nawabi A, Komatsu M, Huang H and Ding WX: Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget. 7:17681–17698. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Wang F, Guo Q, Li M, Wang L, Zhang Z, Jiang S, Jin H, Chen A, Tan S, et al: Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol. 19:375–387. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dal-Re R: Worldwide behavioral research on major global causes of mortality. Health Educ Behav. 38:433–440. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, et al: Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 124:3987–4003. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pouwels SD, Zijlstra GJ, van der Toorn M, Hesse L, Gras R, Ten Hacken NH, Krysko DV, Vandenabeele P, de Vries M, van Oosterhout AJ, et al: Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 310:L377–L386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhou JS, Xu XC, Li ZY, Chen HP, Ying SM, Li W, Shen HH and Chen ZH: Endoplasmic reticulum chaperone GRP78 mediates cigarette smoke-induced necroptosis and injury in bronchial epithelium. Int J Chron Obstruct Pulmon Dis. 13:571–581. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ and Hudson LD: Incidence and outcomes of acute lung injury. N Engl J Med. 353:1685–1693. 2005. View Article : Google Scholar : PubMed/NCBI | |
Syed MA, Shah D, Das P, Andersson S, Pryhuber G and Bhandari V: TREM-1 Attenuates RIPK3-mediated necroptosis in hyperoxia-induced lung injury in neonatal mice. Am J Respir Cell Mol Biol. 60:308–322. 2019. View Article : Google Scholar : | |
Chen J, Wang S, Fu R, Zhou M, Zhang T, Pan W, Yang N and Huang Y: RIP3 dependent NLRP3 inflammasome activation is implicated in acute lung injury in mice. J Transl Med. 16:2332018. View Article : Google Scholar : PubMed/NCBI | |
Siempos II, Ma KC, Imamura M, Baron RM, Fredenburgh LE, Huh JW, Moon JS, Finkelsztein EJ, Jones DS, Lizardi MT, et al: RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. JCI Insight. 3:e971022018. View Article : Google Scholar : | |
Bolognese AC, Yang WL, Hansen LW, Denning NL, Nicastro JM, Coppa GF and Wang P: Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis. Surgery. Apr 27–2018.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, Sato N, Yoshida M, Tsubouchi K, Kurita Y, et al: Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J Immunol. 197:504–516. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Yoshida M, Kim MS, Lee JH, Baek AR, Jang AS, Kim DJ, Minagawa S, Chin SS, Park CS, et al: Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol. 59:215–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Papi A, Brightling C, Pedersen SE and Reddel HK: Asthma. Lancet. 391:783–800. 2018. View Article : Google Scholar | |
Cerps SC, Menzel M, Mahmutovic Persson I, Bjermer L, Akbarshahi H and Uller L: Interferon-beta deficiency at asthma exacerbation promotes MLKL mediated necroptosis. Sci Rep. 8:42482018. View Article : Google Scholar | |
Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A, Croker BA and Gerlic M: Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J. 286:507–522. 2019. View Article : Google Scholar | |
Zhang H, Ji J, Liu Q and Xu S: MUC1 downregulation promotes TNF-α-induced necroptosis in human bronchial epithelial cells via regulation of the RIPK1/RIPK3 pathway. J Cell Physiol. 234:15080–15088. 2019. View Article : Google Scholar : | |
Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, et al: Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA. 110:12024–12029. 2013. View Article : Google Scholar : PubMed/NCBI | |
Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, et al: Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA. 111:16836–16841. 2014. View Article : Google Scholar : PubMed/NCBI | |
Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U and Krautwald S: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81:751–761. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, Grigorescu M, Kulkarni OP, Popper B, Vielhauer V, et al: Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun. 7:102742016. View Article : Google Scholar : PubMed/NCBI | |
Tristao VR, Goncalves PF, Dalboni MA, Batista MC, Durao Mde S Jr and Monte JC: Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren Fail. 34:373–377. 2012. View Article : Google Scholar : PubMed/NCBI | |
Linkermann A, Heller JO, Prokai A, Weinberg JM, De Zen F, Himmerkus N, Szabó AJ, Bräsen JH, Kunzendorf U and Krautwald S: The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol. 24:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, et al: A role for tubular necroptosis in Cisplatin-Induced AKI. J Am Soc Nephrol. 26:2647–2658. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tristao VR, Pessoa EA, Nakamichi R, Reis LA, Batista MC, Durão Junior Mde S and Monte JC: Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity. Apoptosis. 21:51–59. 2016. View Article : Google Scholar | |
Zhu Y, Cui H, Gan H, Xia Y, Wang L, Wang Y and Sun Y: Necroptosis mediated by receptor interaction protein kinase 1 and 3 aggravates chronic kidney injury of subtotal nephrectomised rats. Biochem Biophys Res Commun. 461:575–581. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Fang Y, Wu J, Chen H, Zou Z, Zhang X, Shao J and Xu Y: RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 9:8782018. View Article : Google Scholar : PubMed/NCBI | |
McManus DD, Piacentine SM, Lessard D, Gore JM, Yarzebski J, Spencer FA and Goldberg RJ: Thirty-year (1975 to 2005) trends in the incidence rates, clinical features, treatment practices, and short-term outcomes of patients <55 years of age hospitalized with an initial acute myocardial infarction. Am J Cardiol. 108:477–482. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lusis AJ: Atherosclerosis. Nature. 407:233–241. 2000. View Article : Google Scholar : PubMed/NCBI | |
Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, et al: Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI | |
Henderson B, Revell PA and Edwards JC: Synovial lining cell hyperplasia in rheumatoid arthritis: Dogma and fact. Ann Rheum Dis. 47:348–349. 1988. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Kwon JY, Kim SY, Jung K and Cho ML: Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep. 7:101332017. View Article : Google Scholar : PubMed/NCBI | |
Jhun J, Lee SH, Kim SY, Ryu J, Kwon JY, Na HS, Jung K, Moon SJ, Cho ML and Min JK: RIPK1 inhibition attenuates experimental autoimmune arthritis via suppression of osteoclastogenesis. J Transl Med. 17:842019. View Article : Google Scholar : PubMed/NCBI | |
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riegger J and Brenner RE: Evidence of necroptosis in osteoarthritic disease: Investigation of blunt mechanical impact as possible trigger in regulated necrosis. Cell Death Dis. 10:6832019. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Kepp O, Chan FK and Kroemer G: Necroptosis: Mechanisms and relevance to disease. Annu Rev Pathol. 12:103–130. 2017. View Article : Google Scholar | |
Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V and Altucci L: The role of necroptosis: Biological relevance and its involvement in cancer. Cancers (Basel). 13:6842021. View Article : Google Scholar | |
Martens S, Hofmans S, Declercq W, Augustyns K and Vandenabeele P: Inhibitors Targeting RIPK1/RIPK3: Old and new drugs. Trends Pharmacol Sci. 41:209–224. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, Rall GF, Degterev A and Balachandran S: Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci USA. 110:E3109–E3118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bollino D, Balan I and Aurelian L: Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem. 133:174–186. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Hwang KE, Park DS, Oh SH, Jun HY, Yoon KH, Jeong ET, Kim HR and Kim YS: Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl Med. 15:1232017. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Li G, Han G, Feng S, Liu Y, Chen J, Liu C, Zhao L and Jin F: Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway. Invest New Drugs. 38:50–59. 2020. View Article : Google Scholar | |
Li Y, Tian X, Liu X and Gong P: Bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the ROS-mediated RIP1/RIP3/PARP-1 pathways. Carcinogenesis. 39:700–707. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, Jing L and Sun X: Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med. 16:2012018. View Article : Google Scholar : PubMed/NCBI | |
Fakharnia F, Khodagholi F, Dargahi L and Ahmadiani A: Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis, Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion. J Mol Neurosci. 61:52–60. 2017. View Article : Google Scholar | |
Ding J, Yang N, Yan Y, Wang Y, Wang X, Lu L and Dong K: Rapamycin inhibited photoreceptor necroptosis and protected the retina by activation of autophagy in experimental retinal detachment. Curr Eye Res. 44:739–745. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan C, Oh JS, Yoo SH, Lee JS, Yoon YG, Oh YJ, Jang MS, Lee SY, Yang J, Lee SH, et al: The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. Toxicol Appl Pharmacol. 266:9–18. 2013. View Article : Google Scholar | |
Li D, Li C, Li L, Chen S, Wang L, Li Q, Wang X, Lei X and Shen Z: Natural Product Kongensin A is a Non-Canonical HSP90 Inhibitor that Blocks RIP3-dependent Necroptosis. Cell Chem Biol. 23:257–266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Li HM, Zhou C, Li Q, Ma L, Zhang Z, Sun Y, Wang L, Zhang X, Zhu B, et al: Non-benzoquinone geldanamycin analogs trigger various forms of death in human breast cancer cells. J Exp Clin Cancer Res. 35:1492016. View Article : Google Scholar : PubMed/NCBI | |
Chen WW, Yu H, Fan HB, Zhang CC, Zhang M, Zhang C, Cheng Y, Kong J, Liu CF, Geng D and Xu X: RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen-glucose deprivation combined with zVAD in primary cortical neurons. J Neurochem. 120:70–77. 2012. View Article : Google Scholar | |
Qu C, Yuan ZW, Yu XT, Huang YF, Yang GH, Chen JN, Lai XP, Su ZR, Zeng HF, Xie Y and Zhang XJ: Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism. Pharmacol Res. 121:70–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fauster A, Rebsamen M, Huber KV, Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M, Gridling M, Parapatics K, et al: A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 6:e17672015. View Article : Google Scholar : PubMed/NCBI | |
Harris PA, Marinis JM, Lich JD, Berger SB, Chirala A, Cox JA, Eidam PM, Finger JN, Gough PJ, Jeong JU, et al: Identification of a RIP1 Kinase Inhibitor Clinical Candidate (GSK3145095) for the treatment of pancreatic cancer. ACS Med Chem Lett. 10:857–862. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ali M and Mocarski ES: Proteasome inhibition blocks necroptosis by attenuating death complex aggregation. Cell Death Dis. 9:3462018. View Article : Google Scholar : PubMed/NCBI | |
Martens S, Jeong M, Tonnus W, Feldmann F, Hofmans S, Goossens V, Takahashi N, Bräsen JH, Lee EW, Van der Veken P, et al: Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death Dis. 8:e29042017. View Article : Google Scholar : PubMed/NCBI | |
von Mässenhausen A, Tonnus W, Himmerkus N, Parmentier S, Saleh D, Rodriguez D, Ousingsawat J, Ang RL, Weinberg JM, Sanz AB, et al: Phenytoin inhibits necroptosis. Cell Death Dis. 9:3592018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Y, Huang WH, Zeng XC, Li XH, Li J, Zhou J, Xiao J, Xiao B, Ouyang DS and Hu K: The protective effect of aucubin from eucommia ulmoides against status epilepticus by inducing autophagy and inhibiting necroptosis. Am J Chin Med. 45:557–573. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng XM, Li HD, Wu WF, Ming-Kuen Tang P, Ren GL, Gao L, Li XF, Yang Y, Xu T, Ma TT, et al: Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis. Lab Invest. 98:79–94. 2018. View Article : Google Scholar | |
Nehs MA, Lin CI, Kozono DE, Whang EE, Cho NL, Zhu K, Moalem J, Moore FD Jr and Ruan DT: Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery. 150:1032–1039. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oliver Metzig M, Fuchs D, Tagscherer KE, Gröne HJ, Schirmacher P and Roth W: Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene. 35:3399–3409. 2016. View Article : Google Scholar | |
Choi MJ, Kang H, Lee YY, Choo OS, Jang JH, Park SH, Moon JS, Choi SJ and Choung YH: Cisplatin-Induced ototoxicity in rats is driven by RIP3-Dependent necroptosis. Cells. 8:4092019. View Article : Google Scholar : | |
Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A, et al: Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology. 5:e11496732016. View Article : Google Scholar : PubMed/NCBI | |
Basit F, Cristofanon S and Fulda S: Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20:1161–1173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng Q, Yu X, Xiao L, Hu Z, Luo X, Tao Y, Yang L, Liu X, Chen H, Ding Z, et al: Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis. 4:e8042013. View Article : Google Scholar : PubMed/NCBI | |
Lin CY, Chang TW, Hsieh WH, Hung MC, Lin IH, Lai SC and Tzeng YJ: Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov. 2:160652016. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grootjans S, Vanden Berghe T and Vandenabeele P: Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 24:1184–1195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Upton JW, Kaiser WJ and Mocarski ES: Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe. 7:302–313. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pan T, Wu S, He X, Luo H, Zhang Y, Fan M, Geng G, Ruiz VC, Zhang J, Mills L, et al: Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4+ T lymphocytes. PLoS One. 9:e939442014. View Article : Google Scholar : PubMed/NCBI | |
Berger AK and Danthi P: Reovirus activates a caspase-independent cell death pathway. mBio. 4:e00178–00113. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B and Lenardo MJ: A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 278:51613–51621. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shrestha A, Mehdizadeh Gohari I and McClane BA: RIP1, RIP3, and MLKL contribute to cell death caused by clostridium perfringens enterotoxin. mBio. 10:e02985–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roca FJ and Ramakrishnan L: TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell. 153:521–534. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kitur K, Parker D, Nieto P, Ahn DS, Cohen TS, Chung S, Wachtel S, Bueno S and Prince A: Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog. 11:e10048202015. View Article : Google Scholar : PubMed/NCBI | |
Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X, Cohen JI, Pollard J, Feldstein AE and Nagy LE: Inhibition of apoptosis protects mice from ethanol-mediated acceleration of early markers of CCl4-induced fibrosis but not steatosis or inflammation. Alcohol Clin Exp Res. 36:1139–1147. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Xu W, Zhang F, Shao J and Zheng S: Nrf2 knockdown disrupts the protective effect of curcumin on alcohol-induced hepatocyte necroptosis. Mol Pharm. 13:4043–4053. 2016. View Article : Google Scholar : PubMed/NCBI | |
Afonso MB, Rodrigues PM, Simao AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J and Rodrigues CM: Activation of necroptosis in human and experimental cholestasis. Cell Death Dis. 7:e23902016. View Article : Google Scholar : PubMed/NCBI | |
Choi HS, Kang JW and Lee SM: Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl Res. 166:292–303. 2015. View Article : Google Scholar : PubMed/NCBI | |
Harris PA, Berger SB, Jeong JU, Nagilla R, Bandyopadhyay D, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong X, et al: Discovery of a First-in-Class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 60:1247–1261. 2017. View Article : Google Scholar : PubMed/NCBI |