Interleukin‑6 signalling as a valuable cornerstone for molecular medicine (Review)
- Authors:
- Maria Trovato
- Salvatore Sciacchitano
- Alessio Facciolà
- Andrea Valenti
- Giuseppa Visalli
- Angela Di Pietro
-
Affiliations: Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy, Department of Clinical and Molecular Medicine, Sapienza University, I‑00189 Rome, Italy, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy - Published online on: April 16, 2021 https://doi.org/10.3892/ijmm.2021.4940
- Article Number: 107
-
Copyright: © Trovato et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Schimpl A and Wecker E: Replacement of T cell function by a T cell product. Nat New Biol. 237:15–17. 1972. View Article : Google Scholar : PubMed/NCBI | |
Hirano T: Revisiting the 1986 molecular cloning of interleukin 6. Front Immunol. 5:4562014. View Article : Google Scholar : PubMed/NCBI | |
Hirano T, Taga T, Nakano N, Yasukawa K, Kashiwamura S, Shimizu K, Nakajima K, Pyun KH and Kishimoto T: Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA. 82:5490–5494. 1985. View Article : Google Scholar : PubMed/NCBI | |
Sehgal PB, Grieninger G and Tosato G: Regulation of the acute phase and immune responses: Interleukin-6. Ann N Y Acad Sci. 557:1–583. 1989. | |
Sehgal PB, Zilberstein A, Ruggieri RM, May LT, Ferguson-Smith A, Slate DL, Revel M and Ruddle FH: Human chromosome 7 carries the beta 2 interferon gene. Proc Natl Acad Sci USA. 83:5219–5222. 1986. View Article : Google Scholar : PubMed/NCBI | |
Sutherland GR, Baker E, Callen DF, Hyland VJ, Wong G, Clark S, Jones SS, Eglinton LK, Shannon MF, Lopez AF, et al: Interleukin 4 is at 5q31 and interleukin 6 is at 7p15. Hum Genet. 79:335–337. 1988. View Article : Google Scholar : PubMed/NCBI | |
Somers W, Stahl M and Seehra JS: 1.9 A crystal structure of interleukin 6: Implications for a novel mode of receptor dimerization and signaling. EMBO J. 16:989–997. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Zheng Y, Tian T, Liu K, Wang M, Lin S, Deng Y, Dai C, Xu P, Hao Q, et al: Associations of interleukin-6 gene polymorphisms with cancer risk: Evidence based on 49,408 cancer cases and 61,790 controls. Gene. 670:136–147. 2018. View Article : Google Scholar : PubMed/NCBI | |
Simpson RJ, Hammacher A, Smith DK, Matthews JM and Ward LD: Interleukin-6: Structure-function relationships. Protein Sci. 6:929–955. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hirano T: Interleukin 6 and its receptor: Ten years later. Int Rev Immunol. 16:249–284. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hunter CA and Jones SA: IL-6 as a keystone cytokine in health and disease. Nat Immunol. 16:448–457. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sumikawa H, Fukuhara K, Suzuki E, Matsuo Y and Nishikawa K: Tertiary structural models for human interleukin-6 and evaluation by a sequence-structure compatibility method and NMR experimental information. FEBS Lett. 404:234–240. 1997. View Article : Google Scholar : PubMed/NCBI | |
Heinrich PC, Castell JV and Andus T: Interleukin-6 and the acute phase response. Biochem J. 265:621–636. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bazan JF: Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA. 87:6934–6938. 1990. View Article : Google Scholar : PubMed/NCBI | |
Sakakibara S and Tosato G: Viral Interleukin-6: Role in Kaposi's sarcoma-associated herpesvirus: Associated malignancies. J Interferon Cytokine Res. 31:791–801. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T and Kishimoto T: Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 241:825–828. 1988. View Article : Google Scholar : PubMed/NCBI | |
Hibi M, Murakami M, Saito M, Hirano T, Taga T and Kishimoto T: Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 63:1149–1157. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kluck PM, Wiegant J, Jansen RP, Bolk MW, Raap AK, Willemze R and Landegent JE: The human interleukin-6 receptor alpha chain gene is localized on chromosome 1 band q21. Hum Genet. 90:542–544. 1993. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez C, Grosgeorge J, Nguyen VC, Gaudray P and Theillet C: Human gp130 transducer chain gene (IL6ST) is localized to chromosome band 5q11 and possesses a pseudogene on chromosome band 17p11. Cytogenet Cell Genet. 70:64–67. 1995. View Article : Google Scholar : PubMed/NCBI | |
Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, Hirano T and Kishimoto T: Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 58:573–581. 1989. View Article : Google Scholar : PubMed/NCBI | |
Boulanger MJ, Chow DC, Brevnova EE and Garcia KC: Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science. 300:2101–2104. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lacroix M, Rousseau F, Guilhot F, Malinge P, Magistrelli G, Herren S, Jones SA, Jones GW, Scheller J, Lissilaa R, et al: Novel insights into interleukin 6 (IL-6) Cis- and trans-signaling pathways by differentially manipulating the assembly of the IL-6 signaling complex. J Biol Chem. 290:26943–26953. 2015. View Article : Google Scholar : PubMed/NCBI | |
Trovato MC, Andronico D, Sciacchitano S, Ruggeri RM, Picerno I, Di Pietro A and Visalli G: Nanostructures: Between natural environment and medical practice. Rev Environ Health. 33:295–307. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weidle UH, Klostermann S, Eggle D and Krüger A: Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genomics Proteomics. 7:287–302. 2010.PubMed/NCBI | |
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Scheller J, Chalaris A, Schmidt-Arras D and Rose-John S: The pro- and anti-inflammatory properties of the cytokine inter-leukin-6. Biochim Biophys Acta. 1813:878–888. 2011. View Article : Google Scholar : PubMed/NCBI | |
An Y, Furber KL and Ji S: Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med. 21:185–192. 2017. View Article : Google Scholar | |
Kuscuoglu D, Janciauskiene S, Hamesch K, Haybaeck J, Trautwein C and Strnad P: Liver-master and servant of serum proteome. J Hepatol. 69:512–524. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tuck AC and Tollervey D: A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell. 154:996–1009. 2013. View Article : Google Scholar : PubMed/NCBI | |
St Laurent G, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L and Carter DR: Pseudogenes: Pseudo-functional or key regulators in health and disease? RNA. 17:792–798. 2011. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Rij RP and Andino R: The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol. 24:186–193. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lavra L, Ulivieri A, Dominici R, Trovato MC, Bartolazzi A, Soddu S and Sciacchitano S: Analysis of the role of p53 and galectin-3 in proliferation and apoptosis of thyroid carcinoma cell lines by specific RNA interference experiments. Biomed Pharmacother. 60:4912006. View Article : Google Scholar | |
Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, et al: Repression of the antiapoptotic molecule Galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-Induced apoptosis. Mol Cell Biol. 26:4746–4757. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bautista RR, Gómez AO, Miranda AH, Dehesa AZ, Villarreal-Garza C, Ávila-Moreno F and Arrieta O: Correction to: Long non-coding RNAs: Implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer. Clin Epigenetics. 10:1062018. View Article : Google Scholar : PubMed/NCBI | |
Hosseinahli N, Aghapour M, Duijf PHG and Baradaran B: Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol. 233:5574–5588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang HC, Yu HR, Hsu TY, Chen IL, Huang HC, Chang JC and Yang KD: MicroRNA-142-3p and let-7g negatively regulates augmented IL-6 production in neonatal polymorphonuclear leukocytes. Int J Biol Sci. 13:690–700. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao YC, Wang YS, Guo YC, Lin WL, Chang MH and Juo SH: Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. J Am Coll Cardiol. 63:1685–1694. 2014. View Article : Google Scholar | |
Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, et al: The let-7 MicroRNA represses cell proliferation pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Xu W, Lu T, Zhou J, Ge X and Hua D: MicroRNA-142-3p promotes cellular invasion of colorectal cancer cells by activation of RAC1. Technol Cancer Res Treat. 17:15330338187905082018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Varambally S, Maher CA, Cao Q, Chockley P, Toubai T, Malter C, Nieves E, Tawara I, Wang Y, et al: Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood. 117:6172–6183. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sung SY, Liao CH, Wu HP, Hsiao WC, Wu IH, Jinpu Yu, Lin SH and Hsieh CL: Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS One. 8:e716372013. View Article : Google Scholar : PubMed/NCBI | |
Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N and Clavien PA: ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology. 124:692–700. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yoshiya S, Shirabe K, Imai D, Toshima T, Yamashita Y, Ikegami T, Okano S, Yoshizumi T, Kawanaka H and Maehara Y: Blockade of the apelin-APJ system promotes mouse liver regeneration by activating Kupffer cells after partial hepatectomy. J Gastroenterol. 50:573–582. 2015. View Article : Google Scholar | |
Kishimoto T: Interleukin-6: From basic science to medicine-40 years in immunology. Annu Rev Immunol. 23:1–21. 2005. View Article : Google Scholar | |
Papanicolaou DA and Vgontzas AN: Interleukin-6: The endocrine cytokine. J Clin Endocrinol Metab. 85:1331–1333. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ruggeri RM, Sciacchitano S, Vitale A, Cardelli P, Galletti M, Vitarelli E, Barresi G, Benvenga S, Trimarchi F and Trovato M: Serum hepatocyte growth factor is increased in hashimoto's thyroiditis whether or not associated with nodular goiter as compared with healthy non goitrous individuals. J Endocrinol Invest. 32:465–469. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trovato M, Ruggeri RM, Sciacchitano S, Vicchio TM, Picerno I, Pellicanò G, Valenti A and Visalli G: Serum interleukin-6 levels are increased in HIV-infected patients that develop autoimmune disease during long-term follow-up. Immunobiology. 223:264–268. 2018. View Article : Google Scholar | |
Ruggeri RM, Villari D, Simone A, Scarfi R, Attard M, Orlandi F, Barresi G, Trimarchi F, Trovato M and Benvenga S: Co-expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) in thyroid nodules is associated with co-expression of CD30 ligand/CD30 receptor. J Endocrinol Invest. 25:959–966. 2002. View Article : Google Scholar | |
Trovato M, Grosso M, Vitarelli E, Ruggeri RM, Alesci S, Trimarchi F, Barresi G and Benvenga S: Distinctive expression of STAT3 in papillary thyroid carcinomas and a subset of follicular adenomas. Histol Histopathol. 18:393–399. 2003.PubMed/NCBI | |
Ruggeri RM, Barresi G, Sciacchitano S, Trimarchi F, Benvenga S and Trovato M: Immunoexpression of the CD30 ligand/CD30 and IL-6/IL-6R signals in thyroid autoimmune diseases. Histol Histopathol. 21:249–256. 2006. | |
Trovato M: A historical excursus of diagnostic methods for Hashimoto thyroiditis and Graves' disease. Gazz Med Ital Arch Sci Med. 179:479–485. 2020. View Article : Google Scholar | |
Elsabahy M and Wooley KL: Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev. 42:5552–5576. 2013. View Article : Google Scholar : PubMed/NCBI | |
Visalli G, Baluce B, Bertuccio M, Picerno I and Di Pietro A: Mitochondrial-Mediated apoptosis pathway in alveolar epithelial cells exposed to the metals in Combustion-Generated particulate matter. J Toxicol Environ Health A. 78:697–709. 2015. View Article : Google Scholar : PubMed/NCBI | |
Visalli G, Facciolà A, Iannazzo D, Piperno A, Pistone A and Di Pietro A: The role of the iron catalyst in the toxicity of multi-walled carbon nanotubes (MWCNTs). J Trace Elem Med Biol. 43:153–160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Visalli G, Currò M, Iannazzo D, Pistone A, Pruiti Ciarello M, Acri G, Testagrossa B, Bertuccio MP, Squeri R and Di Pietro A: In vitro assessment of neurotoxicity and neuroinflammation of homemade MWCNTs. Environ Toxicol Pharmacol. 56:121–128. 2017. View Article : Google Scholar : PubMed/NCBI | |
Visalli G, Facciolà A, Currò M, Laganà P, La Fauci V, Iannazzo D, Pistone A and Di Pietro A: Mitochondrial impairment induced by sub-chronic exposure to multi-walled carbon nanotubes. Int J Environ Res Public Health. 16:7922019. View Article : Google Scholar : | |
Facciolà A, Visalli G, La Maestra S, Ceccarelli M, D'Aleo F, Nunnari G, Pellicanò GF and Di Pietro A: Carbon nanotubes and central nervous system: Environmental risks, toxicological aspects and future perspectives. Environ Toxicol Pharmacol. 65:23–30. 2019. View Article : Google Scholar | |
Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S and Alenius H: Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 5:6861–6870. 2011. View Article : Google Scholar : PubMed/NCBI | |
Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA and Tsatsakis AM: Inflammation and metabolism in cancer cell-mitochondria key player. Front Oncol. 9:3482019. View Article : Google Scholar : PubMed/NCBI | |
Arnoldussen YJ, Skogstad A, Skaug V, Kasem M, Haugen A, Benker N, Weinbruch S, Apte RN and Zienolddiny S: Involvement of IL-1 genes in the cellular responses to carbon nanotube exposure. Cytokine. 73:128–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Migliore L, Uboldi C, Di Bucchianico S and Coppedè F: Nanomaterials and neurodegeneration. Environ Mol Mutagen. 56:149–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bardi G, Nunes A, Gherardini L, Bates K, Al-Jamal KT, Gaillard C, Prato M, Bianco A, Pizzorusso T and Kostarelos K: Functionalized carbon nanotubes in the brain: Cellular internalization and neuroinflammatory responses. PLoS One. 8:e809642013. View Article : Google Scholar : PubMed/NCBI | |
Bussy C, Al-Jamal KT, Boczkowski J, Lanone S, Prato M, Bianco A and Kostarelos K: Microglia determine brain region-specific neurotoxic responses to chemically functionalized carbon nanotubes. ACS Nano. 9:7815–7830. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rothaug M, Becker-Pauly C and Rose-John S: The role of inter-leukin-6 signaling in nervous tissue. Biochim Biophys Acta. 1863:1218–1227. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Feng X, Valdearcos M, Lutrin D, Uchida Y, Koliwad SK and Maze M: Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br J Anaesth. 120:537–545. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fenga C, Gangemi S, Di Salvatore V, Falzone L and Libra M: Immunological effects of occupational exposure to lead (Review). Mol Med Rep. 15:3355–3360. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF, Spandidos DA and Fenga C: Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int J Mol Med. 38:1012–1020. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shahpiri Z, Bahramsoltani R, Hosein Farzaei M, Farzaei F and Rahimi R: Phytochemicals as future drugs for Parkinson's disease: A comprehensive review. Rev Neurosci. 27:651–668. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ardah MT, Bharathan G, Kitada T and Haque ME: Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP Model of Parkinson's disease. Biomolecules. 10:15192020. View Article : Google Scholar | |
Gadient RA and Otten U: Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res. 637:10–14. 1994. View Article : Google Scholar : PubMed/NCBI | |
Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB and Hariri AR: Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 64:484–490. 2008. View Article : Google Scholar : PubMed/NCBI | |
MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C and Young LT: Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA. 100:1387–1392. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baune BT, Konrad C, Grotegerd D, Suslow T, Birosova E, Ohrmann P, Bauer J, Arolt V, Heindel W, Domschke K, et al: Interleukin-6 gene (IL-6): A possible role in brain morphology in the healthy adult brain. J Neuroinflammation. 9:1252012. View Article : Google Scholar : PubMed/NCBI | |
Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB and Mucke L: Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA. 90:10061–10065. 1993. View Article : Google Scholar : PubMed/NCBI | |
Campbell IL, Erta M, Lim SL, Frausto R, May U, Rose-John S, Scheller J and Hidalgo J: Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci. 34:2503–2513. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chucair-Elliott AJ, Conrady C, Zheng M, Kroll CM, Lane TE and Carr DJ: Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 62:1418–1434. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chomarat P, Banchereau J, Davoust J and Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 1:510–514. 2000. View Article : Google Scholar | |
Urashima M, Chauhan D, Hatziyanni M, Ogata A, Hollenbaugh D, Aruffo A and Anderson KC: CD40 ligand triggers interleukin-6 mediated B cell differentiation. Leuk Res. 20:507–515. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Masters AR, Fortner KA, Champagne DP, Yanguas-Casás N, Silberger DJ, Weaver CT, Haynes L and Rincon M: IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21-producing B helper CD8+ T cells. J Exp Med. 213:2281–2291. 2016. View Article : Google Scholar : PubMed/NCBI | |
Diehl S and Rincón M: The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 39:531–536. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gubernatorova EO, Gorshkova EA, Polinova AI and Drutskaya MS: IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 53:13–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T and Chen Q: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 12:82020. View Article : Google Scholar : PubMed/NCBI | |
Rose-John S, Winthrop K and Calabrese L: The role of IL-6 in host defence against infections: Immunobiology and clinical implications. Nat Rev Rheumatol. 13:399–409. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, et al: Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 130:2620–2629. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ruan Q, Yang K, Wang W, Jiang L and Song J: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46:846–848. 2020. View Article : Google Scholar : PubMed/NCBI | |
Abbasifard M and Khorramdelazad H: The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. Life Sci. 257:1180972020. View Article : Google Scholar : PubMed/NCBI | |
Coomes EA and Haghbayan H: Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol. 30:1–9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, Cai Q, Dong S, Hu S, Wang W and Wei S: Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: A cohort study. J Transl Med. 18:4062020. View Article : Google Scholar : PubMed/NCBI | |
Herold T, Jurinovic V, Arnreich C, Hellmuth JC, von Bergwelt-Baildon M, Klein M and Weinberger T: Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.04.01.20047381. Accessed April 27, 2020. | |
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 395:1054–1062. 2020. View Article : Google Scholar : PubMed/NCBI | |
Atal S and Fatima Z: IL-6 Inhibitors in the treatment of serious COVID-19: A promising therapy? Pharmaceut Med. 34:223–231. 2020.PubMed/NCBI | |
Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, et al: Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 117:10970–10975. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu B, Xu X and Wei H: Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. 18:1642020. View Article : Google Scholar : PubMed/NCBI | |
Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, Franceschini F, Airò P, Bazzani C, Beindorf EA, et al: Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 19:1025682020. View Article : Google Scholar : PubMed/NCBI | |
Issa N, Dumery M, Guisset O, Mourissoux G, Bonnet F and Camou F: Feasibility of tocilizumab in ICU patients with COVID-19. J Med Virol. 93:46–47. 2021. View Article : Google Scholar | |
Alattar R, Ibrahim TBH, Shaar SH, Abdalla S, Shukri K, Daghfal JN, Khatib MY, Aboukamar M, Abukhattab M, Alsoub HA, et al: Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol. 92:2042–2049. 2020. View Article : Google Scholar : PubMed/NCBI | |
Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, Boffini N, Da Prat V, Di Terlizzi G, Lanzillotta M, et al: Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study. Ann Rheum Dis. 79:1277–1285. 2020. View Article : Google Scholar : PubMed/NCBI | |
Benucci M, Giannasi G, Cecchini P, Gobbi FL, Damiani A, Grossi V, Infantino M and Manfredi M: COVID-19 pneumonia treated with sarilumab: A clinical series of eight patients. J Med Virol. 92:2368–2370. 2020. View Article : Google Scholar : PubMed/NCBI | |
Palanques-Pastor T, López-Briz E and Poveda Andrés JL: Involvement of interleukin 6 in SARS-CoV-2 infection: Siltuximab as a therapeutic option against COVID-19. Eur J Hosp Pharm. 27:297–298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, Frigeni M, Damiani M, Micò C, Fagiuoli S, et al: Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. https://doi.org/10.1101/2020.04.01.20048561. | |
Vaidya G, Czer LSC, Kobashigawa J, Kittleson M, Patel J, Chang D, Kransdorf E, Shikhare A, Tran H, Vo A, et al: Successful treatment of severe COVID-19 pneumonia with clazakizumab in a heart transplant recipient: A case report. Transplant Proc. 52:2711–2714. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al: The GeneCards suite: From gene data mining to disease genome sequence analysis. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33. 2016. View Article : Google Scholar | |
Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, Parton A, Armean IM, Trevanion SJ, Flicek P and Cunningham F: Ensembl variation resources. Database (Oxford). 2018:bay1192018. View Article : Google Scholar |