Roles of long non‑coding RNA in osteoarthritis (Review)
- Authors:
- Jicheng Wang
- Yanshan Sun
- Jianyong Liu
- Bo Yang
- Tengyun Wang
- Zhen Zhang
- Xin Jiang
- Yongzhi Guo
- Yangyang Zhang
-
Affiliations: Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China - Published online on: May 19, 2021 https://doi.org/10.3892/ijmm.2021.4966
- Article Number: 133
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Taruc-Uy RL and Lynch SA: Diagnosis and treatment of osteoarthritis. Prim Care. 40:821–836. 2013. View Article : Google Scholar : PubMed/NCBI | |
Felson DT, Naimark A, Anderson J, Kazis L, Castelli W and Meenan RF: The prevalence of knee osteoarthritis in the elderly. The framingham osteoarthritis study. Arthritis Rheum. 30:914–918. 1987. View Article : Google Scholar : PubMed/NCBI | |
Oliveria SA, Felson DT, Reed JI, Cirillo PA and Walker AM: Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 38:1134–1141. 1995. View Article : Google Scholar : PubMed/NCBI | |
Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A and Arden NK: Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: Influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 73:1659–1664. 2014. View Article : Google Scholar | |
Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, Dragomir A, Kalsbeek WD, Luta G and Jordan JM: Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59:1207–1213. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang W: Risk factors of knee osteoarthritis-excellent evidence but little has been done. Osteoarthritis Cartilage. 18:1–2. 2010. View Article : Google Scholar | |
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 101:6062–6067. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS and Makunin IV: Non-coding RNA. Hum Mol Genet. 15(Spec No 1): R17–R29. 2006. View Article : Google Scholar : PubMed/NCBI | |
Elling R, Chan J and Fitzgerald KA: Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur J Immunol. 46:504–512. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitzhugh W, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar : PubMed/NCBI | |
Costa FF: Non-coding RNAs: New players in eukaryotic biology. Gene. 357:83–94. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sosińska P, Mikuła-Pietrasik J and Książek K: The double-edged sword of long non-coding RNA: The role of human brain-specific BC200 RNA in translational control, neurodegenerative diseases, and cancer. Mutat Res Rev Mutat Res. 766:58–67. 2015. View Article : Google Scholar | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, Luo H, Zhao G, Bu D, Jiao F, et al: Long non-coding RNAs function annotation: A global prediction method based on bi-colored networks. Nucleic Acids Res. 41:e352013. View Article : Google Scholar : | |
Mercer TR, Dinger Me and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald KA and Caffrey DR: Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol. 26:140–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reynard LN and Loughlin J: Genetics and epigenetics of osteoarthritis. Maturitas. 71:200–204. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Zhang X, Dai L, Hu X, Zhu J, Li L, Zhou C and Ao Y: Long noncoding RNA related to cartilage injury pro-motes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis Rheumatol. 66:969–978. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu M, Huang G, Zhang Z, Liu J, Zhang Z, Huang Z, Yu B and Meng F: Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients. Osteoarthritis Cartilage. 23:423–432. 2015. View Article : Google Scholar | |
Rinn JL and Chang HY: Genome regulation by long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ulitsky I and Bartel DP: LincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Bi C, Clark BS, Mady R, Shah P and Kohtz JD: The evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20:1470–1484. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ohno M, Fukagawa T, Lee JS and Ikemura T: Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma. 111:201–213. 2002. View Article : Google Scholar : PubMed/NCBI | |
Smart F, Aschrafi A, Atkins A, Owens GC, Pilotte J, Cunningham BA and Vanderklish PW: Two isoforms of the cold-inducible mRNA-binding protein RBM3 localize to dendrites and promote translation. J Neurochem. 101:1367–1379. 2007. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paraskevopoulou MD and Hatzigeorgiou AG: Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. 1402:271–286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI | |
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA and Marti A: Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 29:3595–3611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aigner T, Söder S, Gebhard PM, McAlinden A and Haag J: Mechanisms of disease: Role of chondrocytes in the pathogenesis of osteoarthritis-structure, chaos and senescence. Nat Clin Pract Rheumatol. 3:391–399. 2007. View Article : Google Scholar : PubMed/NCBI | |
Le LT, Swingler TE and Clark IM: Review: The role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 65:1963–1974. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang SD, Lu J, Deng ZH, Li YS and Lei GH: Long noncoding RNAs in osteoarthritis. Joint Bone Spine. 84:553–556. 2017. View Article : Google Scholar | |
Xing D, Liang JQ, Li Y, Lu J, Jia HB, Xu LY and Ma XL: Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop Surg. 6:288–293. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su W, Xie W, Shang Q and Su B: The long noncoding RNA MEG3 is Downregulated and inversely associated with VEGF levels in osteoarthritis. Biomed Res Int. 2015:3568932015. View Article : Google Scholar : PubMed/NCBI | |
Pearson MJ, Philp AM, Heward JA, Roux BT, Walsh DA, Davis ET, Lindsay MA and Jones SW: Long intergenic noncoding RNAs mediate the human chondrocyte inflammatory response and are differentially expressed in osteoarthritis cartilage. Arthritis Rheumatol. 68:845–856. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Tang X, Tian X, Tian J, Zhang Y, Ma J, Xu H and Wang S: LncRNA MALAT1 negatively regulates MDSCs in patients with lung cancer. J Cancer. 9:2436–2442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang F, Chen G, He R and Yang L: LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci. 9:542019. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Liu D, Zhao L, Wang L, Xin M and Li X: Long noncoding RNA MALAT1 alleviates lipopolysaccharide-induced inflammatory injury by upregulating microRNA-19b in murine chondrogenic ATDC5 cells. J Cell Biochem. 119:10165–10175. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Xu L, Zhou F, Liu AM, Ge HX, Chen YY and Tu M: MALAT1/miR-127-5p regulates osteopontin (OPN)-Mediated proliferation of human chondrocytes through PI3K/Akt pathway. J Cell Biochem. 119:431–439. 2018. View Article : Google Scholar | |
Li X, Tang C, Wang J, Guo P, Wang C, Wang Y, Zhang Z and Wu H: Methylene blue relieves the development of osteoarthritis by upregulating lncRNA Meg3. Exp Ther Med. 15:3856–3864. 2018.PubMed/NCBI | |
Chen K, Zhu H, Zheng MQ and Dong QR: LncRNA MEG3 inhibits the degradation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 axis. Cartilage. Jun 28–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Wu G, Ma X, Xiao J, Yu G, Yang C, Xu N, Zhang B, Zhou J, Ye Z and Wang Z: Attenuation of TGFBR2 expression and tumour progression in prostate cancer involve diverse hypoxia-regulated pathways. J Exp Clin Cancer Res. 37:892018. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chi X, Liu L, Wang Y, Mei X, Yang Y and Jia T: Long noncoding RNA maternally expressed gene 3 knockdown alleviates lipopolysaccharide-induced inflammatory injury by up-regulation of miR-203 in ATDC5 cells. Biomed Pharmacother. 100:240–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K, Kurosaka M and Kuroda R: Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 29:511–515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Niederer F, Ospelt C, Brentano F, Hottiger MO, Gay RE, Gay S, Detmar M and Kyburz D: SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann Rheum Dis. 70:1866–1873. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu J and Xu Y: The lncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. Cell Biosci. 7:692017. View Article : Google Scholar : PubMed/NCBI | |
Svoboda M, Slyskova J, Schneiderova M, Makovicky P, Bielik L, Levy M, Lipska L, Hemmelova B, Kala Z, Protivankova M, et al: HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis. 35:1510–1515. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wang Z, Pan Y, Ma J, Miao X, Qi X, Zhou H and Jia L: MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-κB signaling pathway. Int J Biochem Cell Biol. 94:79–88. 2018. View Article : Google Scholar | |
Hu J, Wang Z, Shan Y, Pan Y, Ma J and Jia L: Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis. 9:7112018. View Article : Google Scholar | |
Dou P, Hu R, Zhu W, Tang Q, Li D, Li H and Wang W: Long non-coding RNA HOTAIR promotes expression of ADAMTS-5 in human osteoarthritic articular chondrocytes. Pharmazie. 72:113–117. 2017. | |
Hu Y, Li S and Zou Y: Knockdown of LncRNA H19 Relieves LPS-Induced damage by modulating miR-130a in osteoarthritis. Yonsei Med J. 60:381–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Steck E, Boeuf S, Gabler J, Werth N, Schnatzer P, Diederichs S and Richter W: Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl). 90:1185–1195. 2012. View Article : Google Scholar | |
Hu Y, Deng C, Zhang H, Zhang J, Peng B and Hu C: Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/β-catenin signaling pathway in bladder cancer. Oncotarget. 8:94554–94568. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Liu Y, Wang Y, Huang X, Zhao W and Zhao Z: Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. Int J Mol Med. 44:630–642. 2019.PubMed/NCBI | |
Pattoli MA, MacMaster JF, Gregor KR and Burke JR: Collagen and aggrecan degradation is blocked in interleukin-1-treated cartilage explants by an inhibitor of IkappaB kinase through suppression of metalloproteinase expression. J Pharmacol Exp Ther. 315:382–388. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Tao J, Zhu S, Cai Y, Mao Q, Yu D, Dai J and Ouyang H: Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials. 39:114–123. 2015. View Article : Google Scholar | |
Thomas NP, Li P, Fleming BC, Chen Q, Wei X, Xiao-hua P, Li G and Wei L: Attenuation of cartilage pathogenesis in post-traumatic osteoarthritis (PTOA) in mice by blocking the stromal derived factor 1 receptor (CXCR4) with the specific inhibitor, AMD3100. J Orthop Res. 33:1071–1078. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, Ji J and Ouyang HW: The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 34:713–723. 2013. View Article : Google Scholar | |
Li L, Lv G, Wang B and Kuang L: The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun. 503:2555–2562. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu JK, He TD, Wei ZX and Wang YM: LncRNA FAS-AS1 promotes the degradation of extracellular matrix of cartilage in osteoarthritis. Eur Rev Med Pharmacol Sci. 22:2966–2972. 2018.PubMed/NCBI | |
Takeda K, Kaisho T and Akira S: Toll-like receptors. Annu Rev Immunol. 21:335–376. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hausmann M, Kiessling S, Mestermann S, Webb G, Spöttl T, Andus T, Schölmerich J, Herfarth H, Ray K, Falk W and Rogler G: Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology. 122:1987–2000. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gomez R, Villalvilla A, Largo R, Gualillo O and Herrero-Beaumont G: TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs. Nat Rev Rheumatol. 11:159–170. 2015. View Article : Google Scholar | |
Wang Y, Cao L, Wang Q, Huang J and Xu S: LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. Artif Cells Nanomed Biotechnol. 47:1241–1247. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zan PF, Yao J, Wu Z, Yang Y, Hu S and Li GD: Cyclin D1 gene silencing promotes IL-1beta-induced apoptosis in rat chondrocytes. J Cell Biochem. 119:290–299. 2018. View Article : Google Scholar | |
Cao L, Wang Y, Wang Q and Huang J: LncRNA FOXD2-AS1 regulates chondrocyte proliferation in osteoarthritis by acting as a sponge of miR-206 to modulate CCND1 expression. Biomed Pharmacother. 106:1220–1226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Ye H, Huang G, Luo F, Liu Y, Liu Y, Yang X, Shen J, Liu Q and Zhang J: Long noncoding RNA GAS5 suppresses the migration and invasion of hepatocellular carcinoma cells via miR-21. Tumor Biol. 37:2691–2702. 2016. View Article : Google Scholar | |
Pickard MR and Williams GT: Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA. Genes (Basel). 6:484–499. 2015. View Article : Google Scholar | |
Nagini S: Breast cancer: Current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 17:152–163. 2017. View Article : Google Scholar | |
Li F, Sun J, Huang S, Su G and Pi G: LncRNA GAS5 overexpression reverses LPS-Induced inflammatory injury and apoptosis through up-regulating KLF2 expression in ATDC5 chondrocytes. Cell Physiol Biochem. 45:1241–1251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song J, Ahn C, Chun Ch and Jin EJ: A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res. 32:1628–1635. 2014. View Article : Google Scholar : PubMed/NCBI | |
Caramés B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ and Lotz M: Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis. 71:575–581. 2012. View Article : Google Scholar : | |
Caramés B, Taniguchi N, Otsuki S, Blanco FJ and Lotz M: Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 62:791–801. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sasaki H, Kubo S, Matsumoto T, Muratsu H, Matsushita T, Ishida K, Takayama K, Oka S, Kurosaka M and Kuroda R: The influence of patella height on intra-operative soft tissue balance in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 20:2191–2196. 2012. View Article : Google Scholar | |
Wang CL, Peng JP and Chen XD: LncRNA-CIR promotes articular cartilage degeneration in osteoarthritis by regulating autophagy. Biochem Biophys Res Commun. 505:692–698. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Li SH, Liu Y and Luo YT: Long noncoding RNA CIR promotes chondrocyte extracellular matrix degradation in osteoarthritis by acting as a sponge for Mir-27b. Cell Physiol Biochem. 43:602–610. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang C, Chen S, Wang G, Shi B, Tao X, Zhou L and Zhao J: Long noncoding RNA DANCR is a positive regulator of proliferation and chondrogenic differentiation in human synovium-derived stem cells. DNA Cell Biol. 36:136–142. 2017. View Article : Google Scholar | |
Zhang L, Zhang P, Sun X, Zhou L and Zhao J: Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis. Biosci Rep. 38:BSR201812282018. View Article : Google Scholar : PubMed/NCBI | |
Lynch KR, Thorpe SB and Santos WL: Sphingosine kinase inhibitors: A review of patent literature (2006-2015). Expert Opin Ther Pat. 26:1409–1416. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marfe G, Mirone G, Shukla A and Di Stefano C: Sphingosine kinases signalling in carcinogenesis. Mini Rev Med Chem. 15:300–314. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Yuan J, Xie J, Pan Z, Yao X, Sun X, Zhang P and Zhang L: Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem Biophys Res Commun. 500:658–664. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ishii N, Ozaki K, Sato H, Mizuno H, Susumu Saito, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, et al: Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 51:1087–1099. 2006. View Article : Google Scholar : PubMed/NCBI | |
Barry G, Briggs JA, Vanichkina DP, Poth EM, Beveridge NJ, Ratnu VS, Nayler SP, Nones K, Hu J, Bredy TW, et al: The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry. 19:486–494. 2014. View Article : Google Scholar | |
Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q and Jiang Q: lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 116:1143–1156. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crea F, Venalainen E, Ci X, Cheng H, Pikor L, Parolia A, Xue H, Nur Saidy NR, Lin D, Lam W, et al: The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics. 8:721–731. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang X and Cui Y: Long non-coding RNA MIAT in development and disease: A new player in an old game. J Biomed Sci. 25:232018. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Luo D, Sun H, Qi Y, Xu W, Jin X, Li C, Lin Z and Li G: MiR-132-3p regulates ADAMTS-5 expression and promotes chondrogenic differentiation of rat mesenchymal stem cells. J Cell Biochem. 119:2579–2587. 2018. View Article : Google Scholar | |
Liu Z, Wang H, Cai H, Hong Y, Li Y, Su D and Fan Z: Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/Derlin-1 pathway. Cancer Cell Int. 18:592018. View Article : Google Scholar : PubMed/NCBI | |
Li C, Pan S, Song Y, Li Y and Qu J: Silence of lncRNA MIAT protects ATDC5 cells against lipopolysaccharides challenge via up-regulating miR-132. Artif Cells Nanomed Biotechnol. 47:2521–2527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhao J, Guo X, She J and Liu Y: Long non-coding RNA PVT1, a molecular sponge for miR-149, contributes aberrant metabolic dysfunction and inflammation in IL-1β-simulated osteoarthritic chondrocytes. Biosci Rep. 38:BSR201805762018. View Article : Google Scholar | |
Li Y, Li S, Luo Y, Liu Y and Yu N: LncRNA PVT1 regulates chondrocyte apoptosis in Osteoarthritis by acting as a Sponge for miR-488-3p. DNA Cell Biol. 36:571–580. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Liu J, Luo T, Chen Q, Lu M and Meng D: LncRNA PACER is down-regulated in osteoarthritis and regulates chondrocyte apoptosis and lncRNA HOTAIR expression. Biosci Rep. Jun 7–2019.Epub ahead of print. View Article : Google Scholar | |
Pei Z, Du X, Song Y, Fan L, Li F, Gao Y, Wu R, Chen Y, Li W, Zhou H, et al: Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/β-catenin signaling pathway. Oncotarget. 8:18145–18153. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo Y, Peng R and Cheng L: LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Wang J, Zhou Y, Zhao Y, Hang D and Cao Y: LncRNA CASC2 is up-regulated in osteoarthritis and participates in the regulation of IL-17 expression and chondrocyte proliferation and apoptosis. Biosci Rep. 39:BSR201824542019. View Article : Google Scholar : PubMed/NCBI | |
Chu P, Wang Q, Wang Z and Gao C: Long non-coding RNA highly up-regulated in liver cancer protects tumor necrosis factor-alpha-induced inflammatory injury by down-regulation of microRNA-101 in ATDC5 cells. Int Immunopharmacol. 72:148–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K and Akira S: TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 4:1144–1150. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ying H, Wang Y, Gao Z and Zhang Q: Long non-coding RNA activated by transforming growth factor beta alleviates lipopolysaccharide-induced inflammatory injury via regulating microRNA-223 in ATDC5 cells. Int Immunopharmacol. 69:313–320. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tang LP, Ding JB, Liu ZH and Zhou GJ: LncRNA Tug 1promotes osteoarthritis-induced degradation of chondrocyte extracellular matrix via miR-195/MMP-13 axis. Eur Rev Med Pharmacol Sci. 22:8574–8581. 2018.PubMed/NCBI | |
Meyerovich K, Violato NM, Fukaya M, Dirix V, Pachera N, Marselli L, Marchetti P, Strasser A, Eizirik DL and Cardozo AK: MCL-1 is a key antiapoptotic protein in human and rodent pancreatic beta-cells. Diabetes. 66:2446–2458. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yu M, Chen L, Sun T, Wang H, Zhao L and Zhao Q: LncRNA PMS2L2 protects ATDC5 chondrocytes against lipopolysaccharide-induced inflammatory injury by sponging miR-203. Life Sci. 217:283–292. 2019. View Article : Google Scholar | |
Collange O, Charles AL, Bouitbir J, Chenard MP, Zoll J, Diemunsch P, Thaveau F, Chakfe N, Piquard F and Geny B: Methylene blue protects liver oxidative capacity after gut ischaemia-reperfusion in the rat. Eur J Vasc Endovasc Surg. 45:168–175. 2013. View Article : Google Scholar | |
Zheng J and Li Q: Methylene blue regulates inflammatory response in osteoarthritis by noncoding long chain RNA CILinc02. J Cell Biochem. 120:3331–3338. 2019. View Article : Google Scholar | |
Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC and Rana TM: The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci USA. 111:1002–1007. 2014. View Article : Google Scholar | |
Liu G, Wang Y, Zhang M and Zhang Q: Long non-coding RNA THRIL promotes LPS-induced inflammatory injury by down-regulating microRNA-125b in ATDC5 cells. Int Immunopharmacol. 66:354–361. 2019. View Article : Google Scholar | |
Xiang S, Li Z, Bian Y and Weng X: Identification of changed expression of mRNAs and lncRNAs in osteoarthritic synovium by RNA-sequencing. Gene. 685:55–61. 2019. View Article : Google Scholar | |
Zhao Y and Xu J: Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop. 42:2865–2872. 2018. View Article : Google Scholar : PubMed/NCBI |