1
|
Alicic RZ, Rooney MT and Tuttle KR:
Diabetic kidney disease: Challenges, progress and possibilities.
Clin J Am Soc Nephrol. 12:2032–2045. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liew A, Bavanandan S, Prasad N, Wong MG,
Chang JM, Eiam-Ong S, Hao CM, Lim CY, Lim SK, Oh KH, et al: Asian
pacific society of nephrology clinical practice guideline on
diabetic kidney disease. Nephrology (Carlton). 25(Suppl 2):
S12–S45. 2020. View Article : Google Scholar
|
3
|
Lin JS and Susztak K: Podocytes: The
weakest link in diabetic kidney disease? Curr Diab Rep. 16:452016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Nichols GA, Déruaz-Luyet A, Brodovicz KG,
Kimes TM, Rosales AG and Hauske SJ: Kidney disease progression and
all-cause mortality across estimated glomerular filtration rate and
albuminuria categories among patients with vs. without type 2
diabetes. BMC Nephrol. 21:1672020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hou Y, Lin S, Qiu J, Sun W, Dong M, Xiang
Y, Wang L and Du P: NLRP3 inflammasome negatively regulates
podocyte autophagy in diabetic nephropathy. Biochem Biophys Res
Commun. 521:791–798. 2020. View Article : Google Scholar
|
6
|
Shahzad K, Bock F, Dong W, Wang H, Kopf S,
Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Biemann R, et al:
Nlrp3-inflammasome activation in non-myeloid-derived cells
aggravates diabetic nephropathy. Kidney Int. 87:74–84. 2015.
View Article : Google Scholar :
|
7
|
Karki R and Kanneganti TD: Diverging
inflammasome signals in tumorigenesis and potential targeting. Nat
Rev Cancer. 19:197–214. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu D, Zeng X, Li X, Cui C, Hou R, Guo Z,
Mehta JL and Wang X: Advances in the molecular mechanisms of NLRP3
inflammasome activators and inactivators. Biochem Pharmacol.
175:1138632020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N,
Wu H, Shi Y and Duan H: NLRP3 deficiency ameliorates renal
inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol.
478:115–125. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Navarro-Gonzalez JF, Mora-Fernandez C,
Muros de Fuentes M and Garcia-Perez J: Inflammatory molecules and
pathways in the pathogenesis of diabetic nephropathy. Nat Rev
Nephrol. 7:327–340. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen J, Xuan J, Gu YT, Shi KS, Xie JJ,
Chen JX, Zheng ZM, Chen Y, Chen XB, Wu YS, et al: Celastrol reduces
IL-1β induced matrix catabolism, oxidative stress and inflammation
in human nucleus pulposus cells and attenuates rat intervertebral
disc degeneration in vivo. Biomed Pharmacother. 91:208–219. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ju Y, Su Y, Chen Q, Ma K, Ji T, Wang Z and
Li W and Li W: Protective effects of Astragaloside IV on
endoplasmic reticulum stress-induced renal tubular epithelial cells
apoptosis in type 2 diabetic nephropathy rats. Biomed Pharmacother.
109:84–92. 2019. View Article : Google Scholar
|
13
|
Zhang Z, Wang J, Zhu Y, Zhang H and Wang
H: Astragaloside IV alleviates myocardial damage induced by type 2
diabetes via improving energy metabolism. Mol Med Rep.
20:4612–4622. 2019.PubMed/NCBI
|
14
|
Li L, Hou X, Xu R, Liu C and Tu M:
Research review on the pharmacological effects of astragaloside IV.
Fundam Clin Pharmacol. 31:17–36. 2017. View Article : Google Scholar
|
15
|
Leng B, Zhang Y, Liu X, Zhang Z, Liu Y,
Wang H and Lu M: Astragaloside IV suppresses high glucose-induced
NLRP3 inflammasome activation by inhibiting TLR4/NF-κB and CaSR.
Mediators Inflamm. 2019:10824972019. View Article : Google Scholar
|
16
|
Sharma K, McCue P and Dunn SR: Diabetic
kidney disease in the db/db mouse. Am J Physiol Renal Physiol.
284:F1138–F1144. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun H, Wang W, Han P, Shao M, Song G, Du
H, Yi T and Li S: Astragaloside IV ameliorates renal injury in
db/db mice. Sci Rep. 6:325452016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen H, Zhang X, Liu L, Cai M, Guo Z and
Qiu L: Application of red clover isoflavone extract as an adjuvant
in mice. Exp Ther Med. 19:1175–1182. 2020.PubMed/NCBI
|
19
|
Jiang L, Cui H and Ding J: Smad3
signalling affects high glucose-induced podocyte injury via
regulation of the cytoskeletal protein transgelin. Nephrology
(Carlton). 25:659–666. 2020. View Article : Google Scholar :
|
20
|
Li F, Chen Y, Li Y, Huang M and Zhao W:
Geniposide alleviates diabetic nephropathy of mice through
AMPK/SIRT1/NF-κB pathway. Eur J Pharmacol. 886:1734492020.
View Article : Google Scholar
|
21
|
Ma Y, Li W, Yazdizadeh Shotorbani P,
Dubansky BH, Huang L, Chaudhari S, Wu P, Wang LA, Ryou MG, Zhou Z
and Ma R: Comparison of diabetic nephropathy between male and
female eNOS(-/-) db/db mice. Am J Physiol Renal Physiol.
316:F889–F897. 2019. View Article : Google Scholar
|
22
|
Lane PH, Steffes MW and Mauer SM:
Estimation of glomerular volume: A comparison of four methods.
Kidney Int. 41:1085–1089. 1992. View Article : Google Scholar : PubMed/NCBI
|
23
|
Canaud G, Bienaimé F, Viau A, Treins C,
Baron W, Nguyen C, Burtin M, Berissi S, Giannakakis K, Muda AO, et
al: AKT2 is essential to maintain podocyte viability and function
during chronic kidney disease. Nat Med. 19:1288–1296. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhan Y, Zhou Y, Zheng W, Liu W, Wang C,
Lan X, Deng X, Xu Y, Zhang B and Ning Y: Alterations of multiple
peripheral inflammatory cytokine levels after repeated ketamine
infusions in major depressive disorder. Transl Psychiatry.
10:2462020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kuo CW, Shen CJ, Tung YT, Chen HL, Chen
YH, Chang WH, Cheng KC, Yang SH and Chen CM: Extracellular
superoxide dismutase ameliorates streptozotocin-induced rat
diabetic nephropathy via inhibiting the ROS/ERK1/2 signaling. Life
Sci. 135:77–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Nowak N, Skupien J, Smiles AM, Yamanouchi
M, Niewczas MA, Galecki AT, Duffin KL, Breyer MD, Pullen N,
Bonventre JV and Krolewski AS: Markers of early progressive renal
decline in type 2 diabetes suggest different implications for
etiological studies and prognostic tests development. Kidney Int.
93:1198–1206. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tziomalos K and Athyros VG: Diabetic
nephropathy: New risk factors and improvements in diagnosis. Rev
Diabet Stud. 12:110–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kanwar YS, Sun L, Xie P, Liu FY and Chen
S: A glimpse of various pathogenetic mechanisms of diabetic
nephropathy. Annu Rev Pathol. 6:395–423. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Weil EJ, Lemley KV, Mason CC, Yee B, Jones
LI, Blouch K, Lovato T, Richardson M, Myers BD and Nelson RG:
Podocyte detachment and reduced glomerular capillary endothelial
fenestration promote kidney disease in type 2 diabetic nephropathy.
Kidney Int. 82:1010–1017. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Barisoni L and Mundel P: Podocyte biology
and the emerging understanding of podocyte diseases. Am J Nephrol.
23:353–360. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wada J and Makino H: Innate immunity in
diabetes and diabetic nephropathy. Nat Rev Nephrol. 12:13–26. 2016.
View Article : Google Scholar
|
33
|
Shahzad K, Bock F, Al-Dabet MM, Gadi I,
Kohli S, Nazir S, Ghosh S, Ranjan S, Wang H, Madhusudhan T, et al:
Caspase-1, but not caspase-3, promotes diabetic nephropathy. J Am
Soc Nephrol. 27:2270–2275. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Perlman AS, Chevalier JM, Wilkinson P, Liu
H, Parker T, Levine DM, Sloan BJ, Gong A, Sherman R and Farrell FX:
Serum Inflammatory and immune mediators are elevated in early stage
diabetic nephropathy. Ann Clin Lab Sci. 45:256–263. 2015.PubMed/NCBI
|
35
|
Murakoshi M, Gohda T and Suzuki Y:
Circulating tumor necrosis factor receptors: A potential biomarker
for the progression of diabetic kidney disease. Int J Mol Sci.
21:19572020. View Article : Google Scholar :
|
36
|
Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols
E, Rollins BJ and Tesch GH: Monocyte chemoattractant
protein-1-induced tissue inflammation is critical for the
development of renal injury but not type 2 diabetes in obese db/db
mice. Diabetologia. 50:471–480. 2007. View Article : Google Scholar
|
37
|
Narindrarangkura P, Bosl W, Rangsin R and
Hatthachote P: Prevalence of dyslipidemia associated with
complications in diabetic patients: A nationwide study in Thailand.
Lipids Health Dis. 18:902019. View Article : Google Scholar : PubMed/NCBI
|