1
|
Fortrie G, de Geus HR and Betjes MG: The
aftermath of acute kidney injury: A narrative review of long-term
mortality and renal function. Crit Care. 23:242019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kölling M, Genschel C, Kaucsar T, Hübner
A, Rong S, Schmitt R, Sörensen-Zender I, Haddad G, Kistler A,
Seeger H, et al: Hypoxia-induced long non-coding RNA Malat1 is
dispensable for renal ischemia/reperfusion-injury. Sci Rep.
8:34382018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Diao C, Wang L, Liu H, Du Y and Liu X:
Aged kidneys are refractory to autophagy activation in a rat model
of renal ischemia-reperfusion injury. Clin Interv Aging.
14:525–534. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang M, Deng J, Lai H, Lai Y, Meng G, Wang
Z, Zhou Z, Chen H, Yu Z, Li S and Jiang H: Vagus nerve stimulation
ameliorates renal ischemia-reperfusion injury through inhibiting
NF-κB activation and iNOS protein expression. Oxid Med Cell Longev.
2020:71065252020.
|
5
|
Liu H, Wang L, Weng X, Chen H, Du Y, Diao
C, Chen Z and Liu X: Inhibition of Brd4 alleviates renal
ischemia/reperfusion injury-induced apoptosis and endoplasmic
reticulum stress by blocking FoxO4-mediated oxidative stress. Redox
Biol. 24:1011952019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xi X, Zou C, Ye Z, Huang Y, Chen T and Hu
H: Pioglitazone protects tubular cells against
hypoxia/reoxygenation injury through enhancing autophagy via
AMPK-mTOR signaling pathway. Eur J Pharmacol. 863:1726952019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Prieto-Moure B, Lloris-Carsí JM,
Belda-Antolí M, Toledo-Pereyra LH and Cejalvo-Lapeña D: Allopurinol
protective effect of renal ischemia by downregulating TNF-α, IL-1β,
and IL-6 response. J Invest Surg. 30:143–151. 2017. View Article : Google Scholar
|
8
|
Yingjie K, Haihong Y, Lingwei C, Sen Z,
Yuanting D, Shasha C, Liutong P, Ying W and Min Z: Apoptosis
repressor with caspase recruitment domain deficiency accelerates
ischemia/reperfusion (I/R)-induced acute kidney injury by
suppressing inflammation and apoptosis: The role of AKT/mTOR
signaling. Biomed Pharmacother. 112:1086812019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gu H, Gu S, Zhang X, Zhang S, Zhang D, Lin
J, Hasengbayi S and Han W: MiR-106b-5p promotes aggressive
progression of hepatocellular carcinoma via targeting RUNX3. Cancer
Med. 8:6756–6767. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun K, Jia Z, Duan R, Yan Z, Jin Z, Yan L,
Li Q and Yang J: Long non-coding RNA XIST regulates miR-106b-5p/P21
axis to suppress tumor progression in renal cell carcinoma. Biochem
Biophys Res Commun. 510:416–420. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tsukita S, Yamada T, Takahashi K, Munakata
Y, Hosaka S, Takahashi H, Gao J, Shirai Y, Kodama S, Asai Y, et al:
MicroRNAs 106b and 222 improve hyperglycemia in a mouse model of
insulin-deficient diabetes via pancreatic β-Cell proliferation.
EBioMedicine. 15:163–172. 2017. View Article : Google Scholar
|
12
|
Liu F, Gong J, Huang W, Wang Z, Wang M,
Yang J, Wu C, Wu Z and Han B: MicroRNA-106b-5p boosts glioma
tumorigensis by targeting multiple tumor suppressor genes.
Oncogene. 33:4813–4822. 2014. View Article : Google Scholar
|
13
|
Zeng T, Wang X, Wang W, Feng Q, Lao G,
Liang Y, Wang C, Zhou J, Chen Y, Liu J, et al: Endothelial
cell-derived small extracellular vesicles suppress cutaneous wound
healing through regulating fibroblasts autophagy. Clin Sci (Lond).
133:CS201900082019. View Article : Google Scholar
|
14
|
Muendlein A, Geiger K, Leiherer A, Saely
CH, Fraunberger P and Drexel H: Evaluation of the associations
between circulating microRNAs and kidney function in coronary
angiography patients. Am J Physiol Renal Physiol. 318:F315–F321.
2020. View Article : Google Scholar
|
15
|
In't Hout FEM, Gerritsen M, Bullinger L,
Van der Reijden BA, Huls G, Vellenga E and Jansen JH: Transcription
factor 4 (TCF4) expression predicts clinical outcome in RUNX1
mutated and translocated acute myeloid leukemia. Haematologica.
105:e454–e457. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Y, Lu Z, Zhang Y, Cai Y, Yun D, Tang
T, Cai Z, Wang C, Zhang Y, Fang F, et al: Transcription factor 4
safeguards hippocampal dentate gyrus development by regulating
neural progenitor migration. Cereb Cortex. 30:3102–3115. 2020.
View Article : Google Scholar
|
17
|
Young RM, Ewan KB, Ferrer VP, Allende ML,
Godovac-Zimmermann J, Dale TC and Wilson S: Developmentally
regulated Tcf7l2 splice variants mediate transcriptional repressor
functions during eye formation. Elife. 8:e514472019. View Article : Google Scholar :
|
18
|
Menon MC, Chuang PY, Li Z, Wei C, Zhang W,
Luan Y, Yi Z, Xiong H, Woytovich C, Greene I, et al: Intronic locus
determines SHROOM3 expression and potentiates renal allograft
fibrosis. J Clin Invest. 125:208–221. 2015. View Article : Google Scholar :
|
19
|
Al-bataineh MM, Kinlough CL, Poland PA,
Pastor-Soler NM, Sutton TA, Mang HE, Bastacky SI, Gendler SJ,
Madsen CS, Singh S, et al: Muc1 enhances the β-catenin protective
pathway during ischemia-reperfusion injury. Am J Physiol Renal
Physiol. 310:F569–F579. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li H, Ma Y, Chen B and Shi J: MiR-182
enhances acute kidney injury by promoting apoptosis involving the
targeting and regulation of TCF7L2/Wnt/β-catenins pathway. Eur J
Pharmacol. 831:20–27. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xu Z, Hong Z, Ma M, Liu X, Chen L, Zheng
C, Xi X and Shao J: Rock2 promotes RCC proliferation by decreasing
SCARA5 expression through β-catenin/TCF4 signaling. Biochem Biophys
Res Commun. 480:586–593. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nàger M, Sallán MC, Visa A, Pushparaj C,
Santacana M, Macià A, Yeramian A, Cantí C and Herreros J:
Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and
sensitizes glioblastoma cells to autophagy blockers. Autophagy.
14:619–636. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wei H, Qu H, Wang H, Ji B, Ding Y, Liu D,
Duan Y, Liang H, Peng C, Xiao X and Deng H:
1,25-Dihydroxyvitamin-D3 prevents the development of diabetic
cardiomyopathy in type 1 diabetic rats by enhancing autophagy via
inhibiting the beta-catenin/TCF4/GSK-3beta/mTOR pathway. J Steroid
Biochem Mol Biol. 168:71–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang XB, Chen X, Li DJ, Qi GN, Dai YQ, Gu
J, Chen MQ, Hu S, Liu ZY and Yang ZM: Inhibition of miR-155
ameliorates acute kidney injury by apoptosis involving the
regulation on TCF4/Wnt/β-Catenin pathway. Nephron. 143:135–147.
2019. View Article : Google Scholar
|
25
|
Shen B, Mei M, Pu Y, Zhang H, Liu H, Tang
M, Pan Q, He Y, Wu X and Zhao H: Necrostatin-1 attenuates renal
ischemia and reperfusion injury via meditation of
HIF-1α/mir-26a/TRPC6/PARP1 Signaling. Mol Ther Nucleic Acids.
17:701–713. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Hu Y, Yang C, Yang S, Cheng F, Rao J and
Wang X: MiR-665 promotes hepatocellular carcinoma cell migration,
invasion, and proliferation by decreasing Hippo signaling through
targeting PTPRB. Cell Death Dis. 9:9542018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang X, Liu J, Yin W, Abdi F, Pang PD,
Fucci QA, Abbott M, Chang SL, Steele G, Patel A, et al: MiR-218
expressed in endothelial progenitor cells contributes to the
development and repair of the kidney microvasculature. Am J Pathol.
190:642–659. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jia P, Wu X, Dai Y, Teng J, Fang Y, Hu J,
Zou J, Liang M and Ding X: MicroRNA-21 is required for local and
remote ischemic preconditioning in multiple organ protection
against sepsis. Crit Care Med. 45:e703–e710. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Amrouche L, Desbuissons G, Rabant M,
Sauvaget V, Nguyen C, Benon A, Barre P, Rabaté C, Lebreton X,
Gallazzini M, et al: MicroRNA-146a in human and experimental
ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc
Nephrol. 28:479–493. 2017. View Article : Google Scholar :
|
31
|
Hao J, Wei Q, Mei S, Li L, Su Y, Mei C and
Dong Z: Induction of microRNA-175p by p53 protects against renal
ischemia-reperfusion injury by targeting death receptor 6. Kidney
Int. 91:106–118. 2017. View Article : Google Scholar
|
32
|
Wei Q, Liu Y, Liu P, Hao J, Liang M, Mi
QS, Chen JK and Dong Z: MicroRNA-489 induction by hypoxia-inducible
factor-1 protects against ischemic kidney injury. J Am Soc Nephrol.
27:2784–2796. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu Z, Li Z, Wang W, Xia Y, He Z, Li B,
Wang S, Huang X, Sun G, Xu J, et al: MIR-1265 regulates cellular
proliferation and apoptosis by targeting calcium binding protein 39
in gastric cancer and, thereby, impairing oncogenic autophagy.
Cancer Lett. 449:226–236. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma L, Li Z, Li W, Ai J and Chen X:
MicroRNA-142-3p suppresses endometriosis by regulating
KLF9-mediated autophagy in vitro and in vivo. RNA Biol.
16:1733–1748. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zheng GH, Wen X, Wang YJ, Han XR, Shan Q,
Li W, Zhao T, Wu DM, Lu J and Zheng YL: MicroRNA-381-induced
down-regulation of CXCR4 promotes the proliferation of renal
tubular epithelial cells in rat models of renal ischemia
reperfusion injury. J Cell Biochem. 119:3149–3161. 2018. View Article : Google Scholar
|
36
|
Chen S, Yao Y, Lin F, Bian F, Zhu C and
Jiang G: MiR-424 is over-expressed and attenuates
ischemia-reperfusion kidney injury via p53 and death receptor 6
pathway. Am J Transl Res. 11:1965–1979. 2019.PubMed/NCBI
|
37
|
Liu XJ, Hong Q, Wang Z, Yu YY, Zou X and
Xu LH: MicroRNA-34a suppresses autophagy in tubular epithelial
cells in acute kidney injury. Am J Nephrol. 42:168–175. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Yan Y, Ma Z, Zhu J, Zeng M, Liu H and Dong
Z: MiR-214 represses mitofusin-2 to promote renal tubular apoptosis
in ischemic acute kidney injury. Am J Physiol Renal Physiol.
318:F878–887. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu B, Chai Y, Guo W, Lin K, Chen S, Liu
J, Sun G, Chen G, Song F, He Y, et al: MicroRNA-188 aggravates
contrast-induced apoptosis by targeting SRSF7 in novel isotonic
contrast-induced acute kidney injury rat models and renal tubular
epithelial cells. Ann Transl Med. 7:3782019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu X, Song N, Zhang X, Jiao X, Hu J, Liang
M, Teng J and Ding X: Renal protection mediated by hypoxia
inducible factor-1α depends on proangiogenesis function of miR-21
by targeting thrombospondin 1. Transplantation. 101:1811–1819.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu XQ, Tian XY, Wang ZW, Wu X, Wang JP and
Yan TZ: MiR-191 secreted by platelet-derived microvesicles induced
apoptosis of renal tubular epithelial cells and participated in
renal ischemia-reperfusion injury via inhibiting CBS. Cell Cycle.
18:119–129. 2019. View Article : Google Scholar :
|
42
|
Chen SJ, Wu P, Sun LJ, Zhou B, Niu W, Liu
S, Lin FJ and Jiang GR: MiR-204 regulates epithelial-mesenchymal
transition by targeting SP1 in the tubular epithelial cells after
acute kidney injury induced by ischemia-reperfusion. Oncol Rep.
37:1148–1158. 2017. View Article : Google Scholar
|
43
|
Chen HH, Lan YF, Li HF, Cheng CF, Lai PF,
Li WH and Lin H: Urinary miR-16 transactivated by C/EBPβ reduces
kidney function after ischemia/reperfusion-induced injury. Sci Rep.
6:279452016. View Article : Google Scholar
|
44
|
Luo X, Wang J, Wei X, Wang S and Wang A:
Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced
osteoarthritis progression by miR-130a-3p/TCF4. Life Sci.
240:1170192020. View Article : Google Scholar
|
45
|
Yin C, Tian Y, Yu Y, Yang C, Su P, Zhao Y,
Wang X, Zhang K, Pei J, Li D, et al: MiR-129-5p inhibits bone
formation through TCF4. Front Cell Dev Biol. 8:6006412020.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu J, Cao D, Zhang D, Zhang Y and Yue Y:
MicroRNA-1 facilitates hypoxia-induced injury by targeting NOTCH3.
J Cell Biochem. 121:4458–4469. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li N, Guo X, Liu L, Wang L and Cheng R:
Molecular mechanism of miR-204 regulates proliferation, apoptosis
and autophagy of cervical cancer cells by targeting ATF2. Artif
Cells Nanomed Biotechnol. 47:2529–2535. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shen Y, Zhao Y, Wang L, Zhang W, Liu C and
Yin A: MicroRNA-194 overexpression protects against
hypoxia/reperfusion-induced HK-2 cell injury through direct
targeting Rheb. J Cell Biochem. Nov 28–2018.Epub ahead of
print.
|
49
|
Guo Y, Ni J, Chen S, Bai M, Lin J, Ding G,
Zhang Y, Sun P, Jia Z, Huang S, et al: MicroRNA-709 mediates acute
tubular injury through effects on mitochondrial function. J Am Soc
Nephrol. 29:449–461. 2018. View Article : Google Scholar :
|
50
|
Lorenzen JM, Kaucsar T, Schauerte C,
Schmitt R, Rong S, Hübner A, Scherf K, Fiedler J, Martino F,
Kumarswamy R, et al: MicroRNA-24 antagonism prevents renal ischemia
reperfusion injury. J Am Soc Nephrol. 25:2717–2729. 2014.
View Article : Google Scholar : PubMed/NCBI
|