MEIS1 and its potential as a cancer therapeutic target (Review)
- Authors:
- Maozhong Yao
- Yong Gu
- Zhaoxin Yang
- Keyan Zhong
- Zhanjuan Chen
-
Affiliations: Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan 570203, P.R. China, Teaching Experimental Animal Center, Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China, Chemical Experiment Teaching Center, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China - Published online on: July 28, 2021 https://doi.org/10.3892/ijmm.2021.5014
- Article Number: 181
-
Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Moskow JJ, Bullrich F, Huebner K, Daar IO and Buchberg AM: Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol. 15:5434–5443. 1995. View Article : Google Scholar | |
Smith JE, Bollekens JA, Inghirami G and Takeshita K: Cloning and mapping of the MEIS1 gene, the human homolog of a murine leukemogenic gene. Genomics. 43:99–103. 1997. View Article : Google Scholar | |
Nakamura T, Largaespada DA, Shaughnessy JD Jr, Jenkins NA and Copeland NG: Cooperative activation of hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet. 12:149–153. 1996. View Article : Google Scholar | |
Steelman S, Moskow JJ, Muzynski K, North C, Druck T, Montgomery JC, Huebner K, Daar IO and Buchberg AM: Identification of a conserved family of Meis1-related homeobox genes. Genome Res. 7:142–156. 1997. View Article : Google Scholar | |
Jiang M, Xu S, Bai M and Zhang A: The emerging role of MEIS1 in cell proliferation and differentiation. Am J Physiol Cell Physiol. 320:C264–C269. 2021. View Article : Google Scholar | |
Torres-Flores J and Jave-Suárez L: MEIS1 (Meis homeobox 1). Atlas Genet Cytogenet Oncol Haematol:. 424–429. 2013. | |
Su ZH, Si WX, Li L, Zhou BS, Li XC, Xu Y, Xu CQ, Jia HB and Wang QK: MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol. 49:53–63. 2014. View Article : Google Scholar | |
Knoepfler PS, Calvo KR, Chen H, Antonarakis SE and Kamps MP: Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci USA. 94:14553–14558. 1997. View Article : Google Scholar | |
Crist RC, Roth JJ, Waldman SA and Buchberg AM: A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer. PLoS One. 6:e236652011. View Article : Google Scholar | |
Aksoz M, Turan RD, Albayrak E and Kocabas F: Emerging roles of Meis1 in cardiac regeneration, stem cells and cancer. Curr Drug Targets. 19:181–190. 2018. View Article : Google Scholar | |
Mamo A, Krosl J, Kroon E, Bijl J, Thompson A, Mayotte N, Girard S, Bisaillon R, Beslu N, Featherstone M and Sauvageau G: Molecular dissection of Meis1 reveals 2 domains required for leukemia induction and a key role for hoxa gene activation. Blood. 108:622–629. 2006. View Article : Google Scholar | |
Dintilhac A, Bihan R, Guerrier D, Deschamps S, Bougerie H, Watrin T, Bonnec G and Pellerin I: PBX1 intracellular localization is independent of Meis1 in epithelial cells of the developing female genital tract. Int J Dev Biol. 49:851–858. 2005. View Article : Google Scholar | |
Crijns APG, de Graeff P, Geerts D, Hoora KAT, Hollemac H, van der Sluis T, Hofstrad RMW, de Bock GH, de Jong S, van der Zeea AGJ and de Vries EGE: MEIS and PBX homeobox proteins in ovarian cancer. Eur J Cancer. 43:2495–2505. 2007. View Article : Google Scholar | |
Li HX, Guo XY, Xie Y, Yuan QL, Ge MX and Zhang JY: Study of the dynamic expression of Meis1 in mice. Iran J Reprod Med. 11:139–144. 2013. | |
Xu B, Geerts D, Qian K, Zhang H and Zhu G: Myeloid ecotropic viral integration site 1 (MEIS) 1 involvement in embryonic implantation. Hum Reprod. 23:1394–1406. 2008. View Article : Google Scholar | |
Quentmeier H, Dirks WG, Macleod RAF, Reinhardt J, Zaborski M and Drexler HG: Expression of HOX genes in acute leukemia cell lines with and without MLL translocations. Leuk Lymphoma. 45:567–574. 2004. View Article : Google Scholar | |
Locatelli P, Belaich MN, López AE, Olea FD, Vega MU, Giménez CS, Simonin JA, Bauzá MDR, Castillo MG, Cuniberti LA, et al: Novel insights into cardiac regeneration based on differential fetal and adult ovine heart transcriptomic analysis. Am J Physiol Heart Circ Physiol. 318:H994–H1007. 2020. View Article : Google Scholar | |
Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER and Sadek HA: Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 497:249–253. 2013. View Article : Google Scholar | |
Imamura T, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Ishii E and Imashuku S: Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement. Br J Haematol. 119:119–121. 2002. View Article : Google Scholar | |
Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet SW, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM, et al: Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 523:226–230. 2015. View Article : Google Scholar | |
Yao MZ, Ge XY, Liu T, Huang N, Liu H, Chen Y, Zhang Z and Hu CP: MEIS1 regulated proliferation and migration of pulmonary artery smooth muscle cells in hypoxia-induced pulmonary hypertension. Life Sci. 255:1178222020. View Article : Google Scholar | |
Ferreira HJ, Heyn H, Vizoso M, Moutinho C, Vidal E, Gomez A, Martínez-Cardús A, Simó-Riudalbas L, Moran S, Jost E and Esteller M: DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia. Oncogene. 35:3079–3082. 2016. View Article : Google Scholar | |
Lasa A, Carnicer MJ, Aventín A, Estivill C, Brunet S, Sierra J and Nomdedéu JF: MEIS 1 expression is downregulated through promoter hypermethylation in AML1-ETO acute myeloid leukemias. Leukemia. 18:1231–1237. 2004. View Article : Google Scholar | |
Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M, Juszczynski P, Borg K, Florek I, Jakóbczyk M and Siedlecki JA: Promoter DNA methylation and expression levels of HOXA4, HOXA5 and MEIS1 in acute myeloid leukemia. Mol Med Rep. 11:3948–3954. 2015. View Article : Google Scholar | |
Ropa J, Saha N, Chen Z, Serio J, Chen W, Mellacheruvu D, Zhao L, Basrur V, Nesvizhskii AI and Muntean AG: PAF1 complex interactions with SETDB1 mediate promoter H3K9 methylation and transcriptional repression of Hoxa9 and Meis1 in acute myeloid leukemia. Oncotarget. 9:22123–22136. 2018. View Article : Google Scholar | |
Beukers W, Hercegovac A, Vermeij M, Kandimalla R, Blok AC, van der Aa MMN, Zwarthoff EC and Zuiverloon TCM: Hypermethylation of the polycomb group target gene PCDH7 in bladder tumors from patients of all ages. J Urol. 190:311–316. 2013. View Article : Google Scholar | |
Dihal AA, Boot A, van Roon EH, Schrumpf M, Fariña-Sarasqueta A, Fiocco M, Zeestraten CM, Peter JK, Kuppen PJK, Morreau H, et al: The homeobox gene Meis1 is methylated in BRAF (V600E) mutated colon tumors. PLoS One. 8:e798982013. View Article : Google Scholar | |
Soltani N, Karimiani EG, Farzanehfar M, Mashkani B, Jafarian A, Ashraf H, Rezyat AA and Soukhtanloo M: Evaluation of the methylation status of the MEIS1 promoter gene in colorectal cancer. Middle East J Cancer. 7:203–207. 2016. | |
Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014. View Article : Google Scholar | |
Liu X, Zhang F, Zhang Y, Li X, Chen C, Zhou M, Zhuo Yu, Liu Y, Zhao Y, Hao X, et al: PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21. Cell Rep. 23:1461–1475. 2018. View Article : Google Scholar | |
Garcia-Cuellar MP, Steger J, Füller E, Hetzner K and Slany RK: Pbx3 and Meis1 cooperate through multiple mechanisms to support hox-induced murine leukemia. Haematologica. 100:905–913. 2015. View Article : Google Scholar | |
Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Kömüves L, Buchberg AM and Largman C: Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia. 13:1993–1999. 1999. View Article : Google Scholar | |
Shen WF, Montgomery JC, Rozenfeld S, Moskow JJ, Lawrence HJ, Buchberg AM and Largman C: AbdB-like hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol. 17:6448–6458. 1997. View Article : Google Scholar | |
Williams TM, Williams ME and Innis JW: Range of HOX/TALE superclass associations and protein domain requirements for HOXA13: MEIS interaction. Dev Biol. 277:457–471. 2005. View Article : Google Scholar | |
Wermuth PJ and Buchberg AM: Meis1-mediated apoptosis is caspase dependent and can be suppressed by coexpression of HoxA9 in murine and human cell lines. Blood. 105:1222–1230. 2005. View Article : Google Scholar | |
Shen WF, Rozenfeld S, Kwong A, Köm ves LG, Lawrence HJ and Largman C: HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol. 19:3051–3061. 1999. View Article : Google Scholar | |
Sarno JL, Kliman HJ and Taylor HS: HOXA10, Pbx2, and Meis1 protein expression in the human endometrium: Formation of multimeric complexes on HOXA10 target genes. J Clin Endocrinol Metab. 90:522–528. 2005. View Article : Google Scholar | |
Toresson H, Parmar M and Campbell K: Expression of Meis and Pbx genes and their protein products in the developing telencephalon: Implications for regional differentiation. Mech Dev. 94:183–187. 2000. View Article : Google Scholar | |
Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG and Cleary ML: Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol. 17:5679–5687. 1997. View Article : Google Scholar | |
Bischof LJ, Kagawa N, Moskow JJ, Takahashi Y, Iwamatsu A, Buchberg AM and Waterman MR: Members of the Meis1 and pbx homeodomain protein families cooperatively bind a cAMP-responsive sequence (CRS1) from bovine CYP17. J Biol Chem. 273:7941–7948. 1998. View Article : Google Scholar | |
Mojsin M and Stevanovic M: PBX1 and MEIS1 up-regulate SOX3 gene expression by direct interaction with a consensus binding site within the basal promoter region. Biochem J. 425:107–116. 2009. View Article : Google Scholar | |
Dardaei L, Longobardi E and Blasi F: Prep1 and Meis1 competition for Pbx1 binding regulates protein stability and tumorigenesis. Proc Natl Acad Sci USA. 111:E896–E905. 2014. View Article : Google Scholar | |
Thorne RMW and Milne TA: Dangerous liaisons: Cooperation between Pbx3, Meis1 and Hoxa9 in leukemia. Haematologica. 100:850–853. 2015. View Article : Google Scholar | |
Okada Y, Nagai R, Sato T, Matsuura E, Minami T, Morita I and Doi T: Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene. Blood. 101:4748–4756. 2003. View Article : Google Scholar | |
Rosales-Aviña JA, Torres-Flores J, Aguilar-Lemarroy A, Gurrola-Díaz C, Hernández-Flores G, Ortiz-Lazareno PC, Lerma-Díaz JM, de Celis R, González-Ramella Ó, Barrera-Chaires E, et al: MEIS1, PREP1, and PBX4 are differentially expressed in acute lymphoblastic leukemia: Association of MEIS1 expression with higher proliferation and chemotherapy resistance. J Exp Clin Cancer Res. 30:1122011. View Article : Google Scholar | |
Rad A, Farshchian M, Forghanifard MM, Matin MM, Bahrami AR, Geerts D, A'rabi A, Memar B and Abbaszadegan MR: Predicting the molecular role of MEIS1 in esophageal squamous cell carcinoma. Tumour Biol. 37:1715–1725. 2016. View Article : Google Scholar | |
Patel AV, Chaney KE, Choi K, Largaespada DA, Kumar AR and Ratner N: An shRNA screen identifies MEIS1 as a driver of malignant peripheral nerve sheath tumors. EBioMedicine. 9:110–119. 2016. View Article : Google Scholar | |
Lin LH, Huang ML, Shi XP, Mayakonda A, Hu KS, Jiang YY, Guo X, Chen L, Pang B, Doan N, et al: Super-enhancer-associated MEIS1 promotes transcriptional dysregulation in ewing sarcoma in co-operation with EWS-FLI1. Nucleic Acids Res. 47:1255–1267. 2019. View Article : Google Scholar | |
Cui L, Li M, Feng F, Yang Y, Hang X, Cui J and Gao J: MEIS1 functions as a potential AR negative regulator. Exp Cell Res. 328:58–68. 2014. View Article : Google Scholar | |
Yokoyama T, Nakatake M, Kuwata T, Couzinet A, Goitsuka R, Tsutsumi S, Aburatani H, Valk PJM, Delwel R and Nakamura T: MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest. 126:1664–1678. 2016. View Article : Google Scholar | |
Argiropoulos B, Yung E, Xiang P, Lo C, Kuchenbauer F, Palmqvist L, Reindl C, Heuser M, Sekulovic S, Rosten P, et al: Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. Blood. 115:4071–4082. 2010. View Article : Google Scholar | |
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, et al: Hoxa9 and Meis1 cooperatively induce addiction to syk signaling by suppressing miR-146a in acute myeloid leukemia. Cancer Cell. 31:549–562. 2017. View Article : Google Scholar | |
Thorsteinsdottir U, Kroon E, Jerome L, Blasi F and Sauvageau G: Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol. 21:224–234. 2001. View Article : Google Scholar | |
Calvo KR, Knoepfler PS, Sykes DB, Pasillas MP and Kamps MP: Meis1a suppresses differentiation by G-CSF and promotes proliferation by SCF: Potential mechanisms of cooperativity with Hoxa9 in myeloid leukemia. Proc Natl Acad Sci USA. 98:13120–13125. 2001. View Article : Google Scholar | |
Wang GG, Pasillas MP and Kamps MP: Persistent transactivation by Meis1 replaces hox function in myeloid leukemogenesis models: Evidence for co-occupancy of Meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol Cell Biol. 26:3902–3916. 2006. View Article : Google Scholar | |
Kiyoi H, Kawashima N and Ishikawa Y: FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 111:312–322. 2020. View Article : Google Scholar | |
Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T, Miyata S and Nakamura T: Trib1 and evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood. 109:3998–4005. 2007. View Article : Google Scholar | |
Arabanian LS, Johansson P, Staffas A, Nilsson T, Rouhi A, Fogelstrand L and Palmqvist L: The endothelin receptor type A is a downstream target of Hoxa9 and Meis1 in acute myeloid leukemia. Leuk Res. 75:61–68. 2018. View Article : Google Scholar | |
Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE, Aplan PD and Humphries RK: Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood. 101:4529–4538. 2003. View Article : Google Scholar | |
Wang GG, Pasillas MP and Kamps MP: Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. Blood. 106:254–264. 2005. View Article : Google Scholar | |
Li ZJ, Chen P, Su R, Hu C, Li Y, Elkahloun AG, Zuo Z, Gurbuxani S, Arnovitz S, Weng H, et al: PBX3 and MEIS1 cooperate in hematopoietic cells to drive acute myeloid leukemias characterized by a core transcriptome of the MLL-rearranged disease. Cancer Res. 76:619–629. 2016. View Article : Google Scholar | |
Wong P, Iwasaki M, Somervaille TCP, So CWE, So CWE and Cleary ML: Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21:2762–2774. 2007. View Article : Google Scholar | |
Orlovsky K, Kalinkovich A, Rozovskaia T, Shezen E, Itkin T, Alder H, Ozer HG, Carramusa L, Avigdor A, Volinia S, et al: Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci USA. 108:7956–7961. 2011. View Article : Google Scholar | |
Whitlock NC, Trostel SY, Wilkinson S, Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED, Gryder BE, et al: MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene. 39:5663–5674. 2020. View Article : Google Scholar | |
Johng D, Torga G, Ewing CM, Jin K, Norris JD, McDonnell DP and Isaacs WB: HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer. Prostate. 79:414–424. 2019. View Article : Google Scholar | |
VanOpstall C, Perike S, Brechka H, Gillard M, Lamperis S, Zhu BZ, Brown R, Bhanvadia R and Griend DJ: MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans. ELife. 9:e536002020. View Article : Google Scholar | |
Li W, Huang K, Guo H and Cui G: Meis1 regulates proliferation of non-small-cell lung cancer cells. J Thorac Dis. 6:850–855. 2014. | |
Song F, Wang H and Wang Y: Myeloid ecotropic viral integration site 1 inhibits cell proliferation, invasion or migration in human gastric cancer. Oncotarget. 8:90050–90060. 2017. View Article : Google Scholar | |
Zhu J, Cui L, Xu A, Yin X, Li F and Gao J: MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC cancer. 17:1762017. View Article : Google Scholar | |
Mahmoudian RA, Bahadori B, Rad A, Abbaszadegan MR and Forghanifard MM: MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med. 7:e007462019. View Article : Google Scholar | |
Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, et al: Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol. 8:277–284. 2012. View Article : Google Scholar | |
Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, et al: Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 27:589–602. 2015. View Article : Google Scholar | |
Kühn MWM, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, et al: Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 6:1166–1181. 2016. View Article : Google Scholar | |
Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim E, Linhares BM, Chen D, Jih G, Perkey E, et al: Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest. 130:981–997. 2020. View Article : Google Scholar | |
Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, Ross KN, Perner F, Olsen SN, Pritchard T, et al: A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 36:660–673. 2019. View Article : Google Scholar | |
Gundry MC, Goodell MA and Brunetti L: It's all about MEis: Menin-MLL inhibition eradicates NPM1-mutated and MLL-rearranged acute leukemias in mice. Cancer Cell. 37:267–269. 2020. View Article : Google Scholar | |
Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, Gadrey JY, Krivtsov AV, Rücker FG, Döhner K, McGeehan GM, et al: Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science. 367:586–590. 2020. View Article : Google Scholar | |
Xu S, Aguilar A, Xu T, Zheng K, Huang L, Stuckey J, Chinnaswamy K, Bernard D, Fernández-Salas E, Liu L, et al: Design of the first-in-class, highly potent irreversible inhibitor targeting the Menin-MLL protein-protein interaction. Angew Chem Int Ed Engl. 57:1601–1605. 2018. View Article : Google Scholar | |
Chen WL, Li DD, Chen X, Wang YZ, Xu JJ, Jiang ZY, You QD and Guo XK: Proton pump inhibitors selectively suppress MLL rearranged leukemia cells via disrupting MLL1-WDR5 protein-protein interaction. Eur J Med Chem. 188:1120272020. View Article : Google Scholar | |
Zhang L, Chen Y, Liu N, Li L, Xiao S, Li X, Chen K, Luo C, Chen S and Chen H: Design, synthesis and anti leukemia cells proliferation activities of pyrimidylaminoquinoline derivatives as DOT1L inhibitors. Bioorg Chem. 80:649–654. 2018. View Article : Google Scholar | |
Somers K, Chudakova DA, Middlemiss SMC, Wen VW, Clifton M, Kwek A, Liu B, Mayoh C, Bongers A, Karsa M, et al: CCI-007, a novel small molecule with cytotoxic activity against infant leukemia with MLL rearrangements. Oncotarget. 7:46067–46087. 2016. View Article : Google Scholar | |
Turan RD, Albayrak E, Uslu M, Siyah P, Alyazici LY, Kalkan BM, Aslan GS, Yuce DC, Aksoz M, Tuysuz EC, et al: Development of small molecule MEIS inhibitors that modulate HSC activity. Sci Rep. 10:79942020. View Article : Google Scholar | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar |