1
|
Cook SA and Schafer S: Hiding in plain
sight: Interleukin-11 emerges as a master regulator of fibrosis,
tissue integrity, and stromal inflammation. Annu Rev Med.
71:263–276. 2020. View Article : Google Scholar
|
2
|
Dong J, Adami E, Chothani SP, Viswanathan
S, Ng B, Lim WW, Sing BK, Zhou J, Ko NSJ, Shekeran SG, et al:
Autocrine IL11 cis-signaling in hepatocytes is an initiating nexus
between lipotoxicity and non-alcoholic steatohepatitis. BioRxiv.
2020.
|
3
|
Nishina T, Komazawa-Sakon S, Yanaka S,
Piao X, Zheng DM, Piao JH, Kojima Y, Yamashina S, Sano E, Putoczki
T, et al: Interleukin-11 links oxidative stress and compensatory
proliferation. Sci Signal. 5:ra52012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhu M, Lu B, Cao Q, Wu Z, Xu Z, Li W, Yao
X and Liu F: IL-11 attenuates liver ischemia/reperfusion injury
(IRI) through STAT3 signaling pathway in mice. PLoS One.
10:e01262962015. View Article : Google Scholar
|
5
|
Bernal W, Auzinger G, Dhawan A and Wendon
J: Acute liver failure. Lancet. 376:190–201. 2010. View Article : Google Scholar
|
6
|
Mühl H: STAT3, a key parameter of
cytokine-driven tissue protection during sterile inflammation-the
case of experimental acetaminophen (paracetamol)-induced liver
damage. Front Immunol. 7:1632016. View Article : Google Scholar
|
7
|
Harrison DA: The Jak/STAT pathway. Cold
Spring Harb Perspect Biol. 4:a0112052012. View Article : Google Scholar
|
8
|
Nielsen M, Kaestel CG, Eriksen KW,
Woetmann A, Stokkedal T, Kaltoft K, Geisler C, Röpke C and Odum N:
Inhibition of constitutively activated Stat3 correlates with
altered Bcl-2/Bax expression and induction of apoptosis in mycosis
fungoides tumor cells. Leukemia. 13:735–738. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schmöcker C, Weylandt KH, Kahlke L, Wang
J, Lobeck H, Tiegs G, Berg T and Kang JX: Omega-3 fatty acids
alleviate chemically induced acute hepatitis by suppression of
cytokines. Hepatology. 45:864–869. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Tang Y, Wang S, Zhou J, Zhou J, Lu
X, Bai X, Wang XY, Chen Z and Zuo D: Endogenous n-3 polyunsaturated
fatty acids attenuate T cell-mediated hepatitis via autophagy
activation. Front Immunol. 7:3502016. View Article : Google Scholar
|
11
|
Yang J, Fernández-Galilea M,
Martínez-Fernández L, González-Muniesa P, Pérez-Chávez A, Martínez
JA and Moreno-Aliaga MJ: Oxidative stress and non-alcoholic fatty
liver disease: Effects of omega-3 fatty acid supplementation.
Nutrients. 11:8722019. View Article : Google Scholar :
|
12
|
Kelley DS, Siegel D, Fedor DM, Adkins Y
and Mackey BE: DHA supplementation decreases serum C-reactive
protein and other markers of inflammation in hypertriglyceridemic
men. J Nutr. 139:495–501. 2009. View Article : Google Scholar
|
13
|
Ma Y, Smith CE, Lai CQ, Irvin MR, Parnell
LD, Lee YC, Pham LD, Aslibekyan S, Claas SA, Tsai MY, et al: The
effects of omega-3 polyunsaturated fatty acids and genetic variants
on methylation levels of the interleukin-6 gene promoter. Mol Nutr
Food Res. 60:410–419. 2016. View Article : Google Scholar :
|
14
|
Song EA, Lim JW and Kim H: Docosahexaenoic
acid inhibits IL-6 expression via PPARγ-mediated expression of
catalase in cerulein-stimulated pancreatic acinar cells. Int J
Biochem Cell Biol. 88:60–68. 2017. View Article : Google Scholar
|
15
|
D'Eliseo D, Di Renzo L, Santoni A and
Velotti F: Docosahexaenoic acid (DHA) promotes immunogenic
apoptosis in human multiple myeloma cells, induces autophagy and
inhibits STAT3 in both tumor and dendritic cells. Genes Cancer.
8:426–437. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Allen MJ, Fan YY, Monk JM, Hou TY,
Barhoumi R, McMurray DN and Chapkin RS: n-3 PUFAs reduce T-helper
17 cell differentiation by decreasing responsiveness to
interleukin-6 in isolated mouse splenic CD4+ T cells. J Nutr.
144:1306–1313. 2014. View Article : Google Scholar :
|
17
|
Tasaki S, Horiguchi A, Asano T, Ito K,
Asano T and Asakura H: Docosahexaenoic acid inhibits the
phosphorylation of STAT3 and the growth and invasion of renal
cancer cells. Exp Ther Med. 14:1146–1152. 2017. View Article : Google Scholar :
|
18
|
O'Shea JJ, Schwartz DM, Villarino AV,
Gadina M, McInnes IB and Laurence A: The JAK-STAT pathway: Impact
on human disease and therapeutic intervention. Annu Rev Med.
66:311–328. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiong A, Yu W, Liu Y, Sanders BG and Kline
K: Elimination of ALDH+ breast tumor initiating cells by
docosahexanoic acid and/or gamma tocotrienol through SHP-1
inhibition of Stat3 signaling. Mol Carcinog. 55:420–430. 2016.
View Article : Google Scholar
|
20
|
Kang JX, Wang J, Wu L and Kang ZB:
Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature.
427:5042004. View Article : Google Scholar
|
21
|
Liu Y, Chen Y, Xie X, Yin A, Yin Y, Liu Y,
Dong L, Zhu Z, Zhou J, Zeng Q, et al: Gender difference on the
effect of omega-3 polyunsaturated fatty acids on
acetaminophen-induced acute liver failure. Oxid Med Cell Longev.
2020:80968472020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Henderson MW, Sparkenbaugh EM, Wang S,
Ilich A, Noubouossie DF, Mailer RK, Renné T, Flick MJ, Luyendyk JP,
Chen ZL, et al: Plasmin-mediated cleavage of high molecular weight
kininogen contributes to acetaminophen-induced acute liver failure.
Blood. Apr 7–2021.Epub ahead of print. View Article : Google Scholar
|
23
|
Saha B and Nandi D: Farnesyltransferase
inhibitors reduce Ras activation and ameliorate
acetaminophen-induced liver injury in mice. Hepatology.
50:1547–1557. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang C, Feng J, Du J, Zhuo Z, Yang S,
Zhang W, Wang W, Zhang S, Iwakura Y, Meng G, et al:
Macrophage-derived IL-1α promotes sterile inflammation in a mouse
model of acetaminophen hepatotoxicity. Cell Mol Immunol.
15:973–982. 2018. View Article : Google Scholar
|
25
|
Torres S, Baulies A, Insausti-Urkia N,
Alarcón-Vila C, Fucho R, Solsona-Vilarrasa E, Núñez S, Robles D,
Ribas V, Wakefield L, et al: Endoplasmic reticulum stress-induced
upregulation of STARD1 promotes acetaminophen-induced acute liver
failure. Gastroenterology. 157:552–568. 2019. View Article : Google Scholar
|
26
|
Osawa Y, Uchinami H, Bielawski J, Schwabe
RF, Hannun YA and Brenner DA: Roles for C16-ceramide and
sphingosine 1-phosphate in regulating hepatocyte apoptosis in
response to tumor necrosis factor-alpha. J Biol Chem.
280:27879–27887. 2005. View Article : Google Scholar
|
27
|
Pang Y, Liu Z, Han H, Wang B, Li W, Mao C
and Liu S: Peptide SMIM30 promotes HCC development by inducing
SRC/YES1 membrane anchoring and MAPK pathway activation. J Hepatol.
73:1155–1169. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lafdil F, Wang H, Park O, Zhang W,
Moritoki Y, Yin S, Fu XY, Gershwin ME, Lian ZX and Gao B: Myeloid
STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1
cytokine and interleukin-17 production. Gastroenterology.
137:2125–2135. e1–e2. 2009. View Article : Google Scholar
|
29
|
Kroy DC, Beraza N, Tschaharganeh DF,
Sander LE, Erschfeld S, Giebeler A, Liedtke C, Wasmuth HE,
Trautwein C and Streetz KL: Lack of interleukin-6/glycoprotein
130/signal transducers and activators of transcription-3 signaling
in hepatocytes predisposes to liver steatosis and injury in mice.
Hepatology. 51:463–473. 2010. View Article : Google Scholar
|
30
|
Streetz KL, Wüstefeld T, Klein C, Kallen
KJ, Tronche F, Betz UA, Schütz G, Manns MP, Müller W and Trautwein
C: Lack of gp130 expression in hepatocytes promotes liver injury.
Gastroenterology. 125:532–543. 2003. View Article : Google Scholar
|
31
|
Garbers C and Scheller J: Interleukin-6
and interleukin-11: Same same but different. Biol Chem.
394:1145–1161. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang J, Homer RJ, Hong L, Cohn L, Lee CG,
Jung S and Elias JA: IL-11 selectively inhibits
aeroallergen-induced pulmonary eosinophilia and Th2 cytokine
production. J Immunol. 165:2222–2231. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Benigni F, Fantuzzi G, Sacco S, Sironi M,
Pozzi P, Dinarello CA, Sipe JD, Poli V, Cappelletti M, Paonessa G,
et al: Six different cytokines that share GP130 as a receptor
subunit, induce serum amyloid A and potentiate the induction of
interleukin-6 and the activation of the
hypothalamus-pituitary-adrenal axis by interleukin-1. Blood.
87:1851–1854. 1996. View Article : Google Scholar
|
34
|
Widjaja AA, Singh BK, Adami E, Viswanathan
S, Dong JR, D'Agostino GA, Ng B, Lim WW, Tan J, Paleja BS, et al:
Inhibiting interleukin 11 signaling reduces hepatocyte death and
liver fibrosis, inflammation, and steatosis in mouse models of
nonalcoholic steatohepatitis. Gastroenterology. 157:777–792.e14.
2019. View Article : Google Scholar
|
35
|
Shin SY, Choi C, Lee HG, Lim Y and Lee YH:
Transcriptional regulation of the interleukin-11 gene by oncogenic
Ras. Carcinogenesis. 33:2467–2476. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gillies TE, Pargett M, Minguet M, Davies
AE and Albeck JG: Linear integration of ERK activity predominates
over persistence detection in Fra-1 regulation. Cell Syst.
5:549–563.e5. 2017. View Article : Google Scholar :
|
37
|
Nishina T, Deguchi Y, Miura R, Yamazaki S,
Shinkai Y, Kojima Y, Okumura K, Kumagai Y and Nakano H: Critical
contribution of nuclear factor erythroid 2-related factor 2 (NRF2)
to electrophile-induced interleukin-11 production. J Biol Chem.
292:205–216. 2017. View Article : Google Scholar
|
38
|
Calder PC: Mechanisms of action of (n-3)
fatty acids. J Nutr. 142:592S–599S. 2012. View Article : Google Scholar
|
39
|
Serini S and Calviello G: Modulation of
Ras/ERK and phosphoinositide signaling by long-chain n-3 PUFA in
breast cancer and their potential complementary role in combination
with targeted drugs. Nutrients. 9:1852017. View Article : Google Scholar
|
40
|
Sun H, Hu Y, Gu Z, Owens RT, Chen YQ and
Edwards IJ: Omega-3 fatty acids induce apoptosis in human breast
cancer cells and mouse mammary tissue through syndecan-1 inhibition
of the MEK-Erk pathway. Carcinogenesis. 32:1518–1524. 2011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Calviello G, Di Nicuolo F, Gragnoli S,
Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti
FO and Palozza P: n-3 PUFAs reduce VEGF expression in human colon
cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and
HIF-1alpha induction pathway. Carcinogenesis. 25:2303–2310. 2004.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu KL, Yang YC, Yao HT, Chia TW, Lu CY,
Li CC, Tsai HJ, Lii CK and Chen HW: Docosahexaenoic acid inhibits
inflammation via free fatty acid receptor FFA4, disruption of TAB2
interaction with TAK1/TAB1 and downregulation of ERK-dependent
Egr-1 expression in EA.hy926 cells. Mol Nutr Food Res. 60:430–443.
2016. View Article : Google Scholar
|