1
|
Yamakawa D, Kawase-Koga Y, Fujii Y, Kanno
Y, Sato M, Ohba S, Kitaura Y, Kashiwagi M and Chikazu D: Effects of
helioxanthin derivative-treated human dental pulp stem cells on
fracture healing. Int J Mol Sci. 21:91582020. View Article : Google Scholar :
|
2
|
Warzecha J, Seebach C, Flinspach A, Wenger
F, Henrich D and Marzi I: Effect of sonic hedgehog/β-TCP composites
on bone healing within the critical-sized rat femoral defect. Exp
Ther Med. 5:1035–1039. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xu J, Hu X, Jiang S, Wang Y, Parungao R,
Zheng S, Nie Y, Liu T and Song K: The application of multi-walled
carbon nanotubes in bone tissue repair hybrid scaffolds and the
effect on cell growth in vitro. Polymers (Basel). 11:2302019.
View Article : Google Scholar
|
4
|
Banfi G, Lombardi G, Colombini A and Lippi
G: Bone metabolism markers in sports medicine. Sports Med.
40:697–714. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Leffers D and Collins L: An overview of
the use of bone scintigraphy in sports medicine. Sports Med
Arthrosc Rev. 17:21–24. 2009. View Article : Google Scholar
|
6
|
Niedermair T, Straub RH, Brochhausen C and
Grässel S: Impact of the sensory and sympathetic nervous system on
fracture healing in ovariectomized mice. Int J Mol Sci. 21:21–24.
2020. View Article : Google Scholar
|
7
|
Tomlinson RE, Christiansen BA, Giannone AA
and Genetos DC: The role of nerves in skeletal development,
adaptation, and aging. Front Endocrinol (Lausanne). 11:6462020.
View Article : Google Scholar
|
8
|
Farahzadi R, Mesbah-Namin SA, Zarghami N
and Fathi E: L-carnitine effectively Induces hTERT gene expression
of human adipose tissue-derived mesenchymal stem cells obtained
from the aged subjects. Int J Stem Cells. 9:107–114. 2016.
View Article : Google Scholar :
|
9
|
Farahzadi R, Fathi E and Vietor I:
Mesenchymal stem cells could be considered as a candidate for
further studies in cell-based therapy of alzheimer's disease via
targeting the signaling pathways. ACS Chem Neurosci. 11:1424–1435.
2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li X, Zheng Y, Hou L, Zhou Z, Huang Y,
Zhang Y, Jia L and Li W: Exosomes derived from maxillary BMSCs
enhanced the osteogenesis in iliac BMSCs. Oral Dis. 26:131–144.
2020. View Article : Google Scholar
|
11
|
Yu L, Wu Y, Liu J, Li B, Ma B, Li Y, Huang
Z, He Y, Wang H, Wu Z and Qiu G: 3D culture of bone marrow-derived
mesenchymal stem cells (BMSCs) could improve bone regeneration in
3D-printed porous Ti6Al4V scaffolds. Stem Cells Int.
2018:20740212018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lombardi G, Ziemann E, Banfi G and
Corbetta S: Physical activity-dependent regulation of parathyroid
hormone and calcium-phosphorous metabolism. Int J Mol Sci.
21:53882020. View Article : Google Scholar :
|
13
|
Takeda S, Elefteriou F, Levasseur R, Liu
X, Zhao L, Parker KL, Armstrong D, Ducy P and Karsenty G: Leptin
regulates bone formation via the sympathetic nervous system. Cell.
111:305–317. 2002. View Article : Google Scholar
|
14
|
Hamano S, Tomokiyo A, Hasegawa D, Yuda A,
Sugii H, Yoshida S, Mitarai H, Wada N and Maeda H: Functions of
beta2-adrenergic receptor in human periodontal ligament cells. J
Cell Biochem. 2020.Online Ahead of Print. View Article : Google Scholar
|
15
|
Nijhuis LE, Olivier BJ, Dhawan S, Hilbers
FW, Boon L, Wolkers MC, Samsom JN and de Jonge WJ: Adrenergic β2
receptor activation stimulates anti-inflammatory properties of
dendritic cells in vitro. PLoS One. 9:e850862014. View Article : Google Scholar
|
16
|
Mauro LJ, Wenzel SJ and Sindberg GM:
Regulation of chick bone growth by leptin and catecholamines. Poult
Sci. 89:697–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
National Research Council Committee for
the Update of the Guide for the Care and use of Laboratory Animals:
Guide for the Care and Use of Laboratory Animals The National
Academies Collection: Reports funded by National Institutes of
Health. National Academies Press; Washington, DC: 2011
|
18
|
Fathi E, Valipour B, Sanaat Z, Nozad
Charoudeh H and Farahzadi R: Interleukin-6, -8, and TGF-β secreted
from mesenchymal stem cells show functional role in reduction of
telomerase activity of leukemia cell via Wnt5a/β-catenin and P53
pathways. Adv Pharm Bull. 10:307–314. 2020. View Article : Google Scholar
|
19
|
Fathi E, Farahzadi R, Javanmardi S and
Vietor I: L-carnitine extends the telomere length of the cardiac
differentiated CD117+-expressing stem cells. Tissue
Cell. 67:1014292020. View Article : Google Scholar
|
20
|
Zhao ZQ, Liu WL, Guo SB, Bai R and Yan JL:
Mechanism of methylprednisolone-induced primary cilia formation
disorder and autophagy in osteoblasts. Orthop Surg. 12:645–652.
2020. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Dasu MR, Ramirez SR, La TD, Gorouhi F,
Nguyen C, Lin BR, Mashburn C, Stewart H, Peavy TR, Nolta JA and
Isseroff RR: Crosstalk between adrenergic and toll-like receptors
in human mesenchymal stem cells and keratinocytes: A recipe for
impaired wound healing. Stem Cells Transl Med. 3:745–759. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang X, Zhu B, Wang X, Xiao R and Wang C:
Three-dimensional co-culture of mesenchymal stromal cells and
differentiated osteoblasts on human bio-derived bone scaffolds
supports active multi-lineage hematopoiesis in vitro: Functional
implication of the biomimetic HSC niche. Int J Mol Med.
38:1141–1151. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shen C, Yang C, Xu S and Zhao H:
Comparison of osteogenic differentiation capacity in mesenchymal
stem cells derived from human amniotic membrane (AM), umbilical
cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci.
9:172019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Heo SK, Noh EK, Gwon GD, Kim JY, Jo JC,
Choi Y, Koh S, Baek JH, Min YJ and Kim H: LIGHT (TNFSF14) increases
the survival and proliferation of human bone marrow-derived
mesenchymal stem cells. PLoS One. 11:e01665892016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yin Y, Chen P, Yu Q, Peng Y, Zhu Z and
Tian J: The effects of a pulsed electromagnetic field on the
proliferation and osteogenic differentiation of human
adipose-derived stem cells. Med Sci Monit. 24:3274–3282. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Chang B, Song W, Han T, Yan J, Li F, Zhao
L, Kou H and Zhang Y: Influence of pore size of porous titanium
fabricated by vacuum diffusion bonding of titanium meshes on cell
penetration and bone ingrowth. Acta Biomater. 33:311–321. 2016.
View Article : Google Scholar
|
28
|
Fares C, Hsu SM, Xian M, Xia X, Ren F,
Mecholsky JJ Jr, Gonzaga L and Esquivel-Upshaw J: Demonstration of
a SiC protective coating for titanium implants. Materials (Basel).
13:33212020. View Article : Google Scholar
|
29
|
Cardona MJ, Turner C, Ross C, Baird E and
Black RA: An improved process for the fabrication and surface
treatment of custom-made titanium cranioplasty implants informed by
surface analysis. J Biomater Appl. 35:602–614. 2021. View Article : Google Scholar
|
30
|
Scarano A, Lorusso F, Orsini T, Morra M,
Iviglia G and Valbonetti L: Biomimetic surfaces coated with
covalently immobilized collagen type I: An X-ray photoelectron
spectroscopy, atomic force microscopy, micro-CT and
histomorphometrical study in rabbits. Int J Mol Sci. 20:7242019.
View Article : Google Scholar
|
31
|
Gong T, Xie J, Liao J, Zhang T, Lin S and
Lin Y: Nanomaterials and bone regeneration. Bone Res. 3:150292015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Dikicier E, Karaçaylı Ü, Dikicier S and
Günaydın Y: Effect of systemic administered zoledronic acid on
osseointegration of a titanium implant in ovariectomized rats. J
Craniomaxillofac Surg. 42:1106–1111. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Y, Hu J, Liu B, Jiang X and Li Y: The
effect of osteoprotegerin on implant osseointegration in
ovariectomized rats. Arch Med Sci. 13:489–495. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tsuchiya S, Sugimoto K, Kamio H, Okabe K,
Kuroda K, Okido M and Hibi H: Kaempferol-immobilized titanium
dioxide promotes formation of new bone: Effects of loading methods
on bone marrow stromal cell differentiation in vivo and in vitro.
Int J Nanomedicine. 13:1665–1676. 2018. View Article : Google Scholar
|
35
|
Carnagarin R, Matthews V, Zaldivia MTK,
Peter K and Schlaich MP: The bidirectional interaction between the
sympathetic nervous system and immune mechanisms in the
pathogenesis of hypertension. Br J Pharmacol. 176:1839–1852. 2019.
View Article : Google Scholar :
|
36
|
Duncan CP and Shim SS: J. Edouard Samson
address: The autonomic nerve supply of bone. An experimental study
of the intraosseous adrenergic nervi vasorum in the rabbit. J Bone
Joint Surg Br. 59:323–330. 1977. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mach DB, Rogers SD, Sabino MC, Luger NM,
Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P
and Mantyh PW: Origins of skeletal pain: Sensory and sympathetic
innervation of the mouse femur. Neuroscience. 113:155–166. 2002.
View Article : Google Scholar
|
38
|
Mediero A, Wilder T, Shah L and Cronstein
BN: Adenosine A2A receptor (A2AR) stimulation modulates
expression of semaphorins 4D and 3A, regulators of bone
homeostasis. Faseb J. 32:3487–3501. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Emet M, Ozcan H, Ozel L, Yayla M, Halici Z
and Hacimuftuoglu A: A review of melatonin, its receptors and
drugs. Eurasian J Med. 48:135–141. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Teong B, Kuo SM, Chen CH, Chen YK, Cheng
ZJ and Huang HH: Characterization and human osteoblastic
proliferation- and differentiation-stimulatory effects of
phosphatidylcholine liposomes-encapsulated propranolol
hydrochloride. Biomed Mater Eng. 24:1875–1887. 2014.PubMed/NCBI
|
41
|
Bonnet N, Benhamou CL, Malaval L,
Goncalves C, Vico L, Eder V, Pichon C and Courteix D: Low dose
beta-blocker prevents ovariectomy-induced bone loss in rats without
affecting heart functions. J Cell Physiol. 217:819–827. 2008.
View Article : Google Scholar
|
42
|
Srinivasan AV: Propranolol: A 50-year
historical perspective. Ann Indian Acad Neurol. 22:21–26. 2019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Woroń J, Siwek M and Gorostowicz A:
Adverse effects of interactions between antidepressants and
medications used in treatment of cardiovascular disorders.
Psychiatr Pol. 53:977–995. 2019. View Article : Google Scholar
|
44
|
Zhou HM, Zhong ML, Wang RH, Long CL, Zhang
YF, Cui WY and Wang H: Synergisms of cardiovascular effects between
iptakalim and amlodipine, hydrochlorothiazide or propranolol in
anesthetized rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi.
31:532–540. 2015.
|
45
|
Stapleton MP: Sir James Black and
propranolol. The role of the basic sciences in the history of
cardiovascular pharmacology. Tex Heart Inst J. 24:336–342.
1997.
|
46
|
Wolter JK, Wolter NE, Blanch A, Partridge
T, Cheng L, Morgenstern DA, Podkowa M, Kaplan DR and Irwin MS:
Anti-tumor activity of the beta-adrenergic receptor antagonist
propranolol in neuroblastoma. Oncotarget. 5:161–172. 2014.
View Article : Google Scholar :
|
47
|
Bustamante P, Miyamoto D, Goyeneche A, de
Alba Graue PG, Jin E, Tsering T, Dias AB, Burnier MN and Burnier
JV: Beta-blockers exert potent anti-tumor effects in cutaneous and
uveal melanoma. Cancer Med. 8:7265–7277. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bravo-Calderón DM, Assao A, Garcia NG,
Coutinho-Camillo CM, Roffé M, Germano JN and Oliveira DT: Beta
adrenergic receptor activation inhibits oral cancer migration and
invasiveness. Arch Oral Biol. 118:1048652020. View Article : Google Scholar
|
49
|
Minkowitz B, Boskey AL, Lane JM, Pearlman
HS and Vigorita VJ: Effects of propranolol on bone metabolism in
the rat. J Orthop Res. 9:869–975. 1991. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wu H, Song Y, Li J, Lei X, Zhang S, Gao Y,
Cheng P, Liu B, Miao S, Bi L, et al: Blockade of adrenergic
β-receptor activation through local delivery of propranolol from a
3D collagen/polyvinyl alcohol/hydroxyapatite scaffold promotes bone
repair in vivo. Cell Prolif. 53:e127252020. View Article : Google Scholar
|
51
|
Sato T, Arai M, Goto S and Togari A:
Effects of propranolol on bone metabolism in spontaneously
hypertensive rats. J Pharmacol Exp Ther. 334:99–105. 2010.
View Article : Google Scholar
|
52
|
Sato T, Miyazawa K, Suzuki Y, Mizutani Y,
Uchibori S, Asaoka R, Arai M, Togari A and Goto S: Selective
β2-adrenergic antagonist butoxamine reduces orthodontic tooth
movement. J Dent Res. 93:807–812. 2014. View Article : Google Scholar
|
53
|
Actis L, Gaviria L, Guda T and Ong JL:
Antimicrobial surfaces for craniofacial implants: State of the art.
J Korean Assoc Oral Maxillofac Surg. 39:43–54. 2013. View Article : Google Scholar
|
54
|
Jenei-Lanzl Z, Grässel S, Pongratz G, Kees
F, Miosge N, Angele P and Straub RH: Norepinephrine inhibition of
mesenchymal stem cell and chondrogenic progenitor cell
chondrogenesis and acceleration of chondrogenic hypertrophy.
Arthritis Rheumatol. 66:2472–2481. 2014. View Article : Google Scholar
|
55
|
Li H, Fong C, Chen Y, Cai G and Yang M:
beta2- and beta3-, but not beta1-adrenergic receptors are involved
in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA
signaling. Arch Biochem Biophys. 496:77–83. 2010. View Article : Google Scholar
|
56
|
Li XL, Zeng D, Chen Y, Ding L, Li WJ, Wei
T, Ou DB, Yan S, Wang B and Zheng QS: Role of alpha- and
beta-adrenergic receptors in cardiomyocyte differentiation from
murine-induced pluripotent stem cells. Cell Prolif. 50:e123102017.
View Article : Google Scholar
|
57
|
Xiao L, Pimental DR, Amin JK, Singh K,
Sawyer DB and Colucci WS: MEK1/2ERK1/2 mediates alpha1-adrenergic
receptor-stimulated hypertrophy in adult rat ventricular myocytes.
J Mol Cell Cardiol. 33:779–787. 2001. View Article : Google Scholar
|
58
|
Marolt Presen D, Traweger A, Gimona M and
Redl H: Mesenchymal stromal cell-based bone regeneration therapies:
From cell transplantation and tissue engineering to therapeutic
secretomes and extracellular vesicles. Front Bioeng Biotechnol.
7:3522019. View Article : Google Scholar :
|
59
|
Zhang W, Zhou L, Dang J, Zhang X, Wang J,
Chen Y, Liang J, Li D, Ma J, Yuan J, et al: Human gingiva-derived
mesenchymal stem cells Ameliorate Streptozoticin-induced T1DM in
mice via suppression of T effector cells and Up-regulating Treg
subsets. Sci Rep. 7:152492017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Reumann MK, Linnemann C, Aspera-Werz RH,
Arnold S, Held M, Seeliger C, Nussler AK and Ehnert S: Donor site
location is critical for proliferation, stem cell capacity, and
osteogenic differentiation of adipose mesenchymal stem/stromal
cells: Implications for bone tissue engineering. Int J Mol Sci.
19:18682018. View Article : Google Scholar
|
61
|
Givogri MI, de Planell M, Galbiati F,
Superchi D, Gritti A, Vescovi A, de Vellis J and Bongarzone ER:
Notch signaling in astrocytes and neuroblasts of the adult
subventricular zone in health and after cortical injury. Dev
Neurosci. 28:81–91. 2006. View Article : Google Scholar
|
62
|
Masaoutis C and Theocharis S: The role of
exosomes in bone remodeling: Implications for bone physiology and
disease. Dis Markers. 2019:94179142019. View Article : Google Scholar
|
63
|
Wong SK, Chin KY and Ima-Nirwana S: The
osteoprotective effects of kaempferol: The evidence from in vivo
and in vitro studies. Drug Des Devel Ther. 13:3497–3514. 2019.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Rodrigues WF, Madeira MF, da Silva TA,
Clemente-Napimoga JT, Miguel CB, Dias-da-Silva VJ, Barbosa-Neto O,
Lopes AH and Napimoga MH: Low dose of propranolol down-modulates
bone resorption by inhibiting inflammation and osteoclast
differentiation. Br J Pharmacol. 165:2140–2151. 2012. View Article : Google Scholar
|
65
|
Smitham P, Crossfield L, Hughes G,
Goodship A, Blunn G and Chenu C: Low dose of propranolol does not
affect rat osteotomy healing and callus strength. J Orthop Res.
32:887–893. 2014. View Article : Google Scholar : PubMed/NCBI
|