Pathology and physiology of acid‑sensitive ion channels in the digestive system (Review)
- Authors:
- Li Zhang
- Liming Zheng
- Xingyue Yang
- Shun Yao
- Hui Wang
- Jiaxing An
- Hai Jin
- Guorong Wen
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: May 23, 2022 https://doi.org/10.3892/ijmm.2022.5150
- Article Number: 94
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Levin LR and Buck J: Physiological roles of acid-base sensors. Annu Rev Physiol. 77:347–362. 2015. View Article : Google Scholar | |
Cheng YR, Jiang BY and Chen CC: Acid-sensing ion channels: Dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci. 25:462018. View Article : Google Scholar : PubMed/NCBI | |
Deval E and Lingueglia E: Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems. Neuropharmacology. 94:49–57. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chu XP and Xiong ZG: Physiological and pathological functions of acid-sensing ion channels in the central nervous system. Curr Drug Targets. 13:263–271. 2012. View Article : Google Scholar : | |
Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, Wemmie JA and Blackshaw LA: Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut. 54:1408–1415. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Ko KH, Chow J, Tuo B, Barrett KE and Dong H: Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol (Oxf). 201:97–107. 2011. View Article : Google Scholar | |
Jones RC III, Otsuka E, Wagstrom E, Jensen CS, Price MP and Gebhart GF: Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology. 133:184–194. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sun X, Wang Z, Zhou X, Xu L, Li F, Zhang X, Pan J, Qi L, Qian H and Mao Z: Involvement of acid-sensing ion channel 1a in gastric carcinoma cell migration and invasion. Acta Biochim Biophys Sin (Shanghai). 50:440–446. 2018. View Article : Google Scholar | |
Krishtal OA and Pidoplichko VI: A receptor for protons in the nerve cell membrane. Neuroscience. 5:2325–2327. 1980. View Article : Google Scholar : PubMed/NCBI | |
Waldmann R, Champigny G, Bassilana F, Heurteaux C and Lazdunski M: A proton-gated cation channel involved in acid-sensing. Nature. 386:173–177. 1997. View Article : Google Scholar : PubMed/NCBI | |
Garty H and Palmer LG: Epithelial sodium channels: Function, structure, and regulation. Physiol Rev. 77:359–396. 1997. View Article : Google Scholar : PubMed/NCBI | |
Waldmann R and Lazdunski M: H (+)-gated cation channels: Neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 8:418–424. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kellenberger S and Schild L: Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev. 2:735–767. 2002. View Article : Google Scholar | |
Benos DJ and Stanton BA: Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) super-family of ion channels. J Physiol. 520(Pt 3): 631–644. 1999. View Article : Google Scholar | |
Kellenberger S and Schild L: International union of basic and clinical pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev. 67:1–35. 2015. View Article : Google Scholar | |
Sherwood TW, Frey EN and Askwith CC: Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol. 303:C699–C710. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grunder S and Chen X: Structure, function, and pharmacology of acid-sensing ion channels (ASICs): Focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol. 2:73–94. 2010.PubMed/NCBI | |
Jasti J, Furukawa H, Gonzales EB and Gouaux E: Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature. 449:316–323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gonzales EB, Kawate T and Gouaux E: Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature. 460:599–604. 2009. View Article : Google Scholar : PubMed/NCBI | |
Krishtal O: The ASICs: Signaling molecules? modulators? Trends Neurosci. 26:477–483. 2003. View Article : Google Scholar | |
Wemmie JA, Taugher RJ and Kreple CJ: Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 14:461–471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holzer P: Acid-sensing ion channels in gastrointestinal function. Neuropharmacology. 94:72–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wemmie JA, Price MP and Welsh MJ: Acid-sensing ion channels: Advances, questions and therapeutic opportunities. Trends Neurosci. 29:578–586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Holzer P: Acid-sensitive ion channels and receptors. Handb Exp Pharmacol. 283–332. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sherwood TW, Lee KG, Gormley MG and Askwith CC: Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 31:9723–9734. 2011. View Article : Google Scholar : PubMed/NCBI | |
Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C and Lazdunski M: Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem. 272:20975–20978. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, Liu H, Jiang H and Xu TL: A nonproton ligand sensor in the acid-sensing ion channel. Neuron. 68:61–72. 2010. View Article : Google Scholar : PubMed/NCBI | |
Noel J, Salinas M, Baron A, Diochot S, Deval E and Lingueglia E: Current perspectives on acid-sensing ion channels: New advances and therapeutic implications. Expert Rev Clin Pharmacol. 3:331–346. 2010. View Article : Google Scholar : PubMed/NCBI | |
Diochot S, Salinas M, Baron A, Escoubas P and Lazdunski M: Peptides inhibitors of acid-sensing ion channels. Toxicon. 49:271–284. 2007. View Article : Google Scholar | |
Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr and Welsh MJ: Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci. 23:5496–5502. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen CC and Zimmer A, Sun WH, Hall J, Brownstein MJ and Zimmer A: A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci USA. 99:8992–8997. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baron A, Voilley N, Lazdunski M and Lingueglia E: Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci. 28:1498–1508. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, Xu L, Wu M and Xu TL: Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem. 279:43716–43724. 2004. View Article : Google Scholar : PubMed/NCBI | |
Su X, Li Q, Shrestha K, Cormet-Boyaka E, Chen L, Smith PR, Sorscher EJ, Benos DJ, Matalon S and Ji HL: Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator. J Biol Chem. 281:36960–36968. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jahr H, van Driel M, van Osch GJ, Weinans H and van Leeuwen JP: Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun. 337:349–354. 2005. View Article : Google Scholar : PubMed/NCBI | |
Richter TA, Dvoryanchikov GA, Roper SD and Chaudhari N: Acid-sensing ion channel-2 is not necessary for sour taste in mice. J Neurosci. 24:4088–4091. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grifoni SC, Jernigan NL, Hamilton G and Drummond HA: ASIC proteins regulate smooth muscle cell migration. Microvasc Res. 75:202–210. 2008. View Article : Google Scholar | |
Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji HL, et al: Acid-sensing ion channels in malignant gliomas. J Biol Chem. 278:15023–15034. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen CC, England S, Akopian AN and Wood JN: A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA. 95:10240–10245. 1998. View Article : Google Scholar : PubMed/NCBI | |
Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T, Lewin GR, Welsh MJ and Blackshaw LA: The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology. 127:1739–1747. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Simon SA: Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae. Brain Res. 923:58–70. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW and Abboud FM: Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res. 101:1009–1019. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ugawa S, Inagaki A, Yamamura H, Ueda T, Ishida Y, Kajita K, Shimizu H and Shimada S: Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells. Neuroreport. 17:1235–1239. 2006. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT and Corey DP: BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA. 94:1459–1464. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R and Lazdunski M: A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem. 272:29778–29783. 1997. View Article : Google Scholar : PubMed/NCBI | |
Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, et al: The mammalian sodium channel BNC1 is required for normal touch sensation. Nature. 407:1007–1011. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hughes PA, Brierley SM, Young RL and Blackshaw LA: Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol. 500:863–875. 2007. View Article : Google Scholar | |
Ettaiche M, Guy N, Hofman P, Lazdunski M and Waldmann R: Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci. 24:1005–1012. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lilley S, LeTissier P and Robbins J: The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci. 24:1013–1022. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ and Keyser KT: Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol. 283:C126–C134. 2002. View Article : Google Scholar : PubMed/NCBI | |
Peng BG, Ahmad S, Chen S, Chen P, Price MP and Lin X: Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci. 24:10167–10175. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Hu ZL, Wu WN, Yu DF, Xiong QJ, Song JR, Shu Q, Fu H, Wang F and Chen JG: Existence and distinction of acid-evoked currents in rat astrocytes. Glia. 58:1415–1424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu XW, Hu ZL, Ni M, Fang P, Zhang PW, Shu Q, Fan H, Zhou HY, Ni L, Zhu LQ, et al: Acid-sensing ion channels promote the inflammation and migration of cultured rat microglia. Glia. 63:483–496. 2015. View Article : Google Scholar | |
Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M and Shimada S: Amiloride-Insensitive currents of the acid-sensing ion Channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci. 23:3616–3622. 2003. View Article : Google Scholar : PubMed/NCBI | |
Delaunay A, Gasull X, Salinas M, Noël J, Friend V, Lingueglia E and Deval E: Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc Natl Acad Sci USA. 109:13124–13129. 2012. View Article : Google Scholar : PubMed/NCBI | |
Voilley N, de Weille J, Mamet J and Lazdunski M: Nonsteroid Anti-Inflammatory Drugs Inhibit Both the Activity and the Inflammation-Induced Expression of Acid-Sensing Ion Channels in Nociceptors. J Neurosci. 21:8026–8033. 2001. View Article : Google Scholar : PubMed/NCBI | |
Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR and Welsh MJ: The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron. 32:1071–1083. 2001. View Article : Google Scholar | |
Dusenkova S, Ru F, Surdenikova L, Nassenstein C, Hatok J, Dusenka R, Banovcin P Jr, Kliment J, Tatar M and Kollarik M: The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am J Physiol Gastrointest Liver Physiol. 307:G922–G930. 2014. View Article : Google Scholar : PubMed/NCBI | |
Babinski K, Le KT and Seguela P: Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem. 72:51–57. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ettaiche M, Deval E, Pagnotta S, Lazdunski M and Lingueglia E: Acid-sensing ion channel 3 in retinal function and survival. Invest Ophthalmol Vis Sci. 50:2417–2426. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ikeuchi M, Kolker SJ, Burnes LA, Walder RY and Sluka KA: Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain. 137:662–669. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kolker SJ, Walder RY, Usachev Y, Hillman J, Boyle DL, Firestein GS and Sluka KA: Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis. 69:903–909. 2010. View Article : Google Scholar | |
Meng QY, Wang W, Chen XN, Xu TL and Zhou JN: Distribution of acid-sensing ion channel 3 in the rat hypothalamus. Neuroscience. 159:1126–1134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang SJ, Yang WS, Lin YW, Wang HC and Chen CC: Increase of insulin sensitivity and reversal of age-dependent glucose intolerance with inhibition of ASIC3. Biochem Biophys Res Commun. 371:729–734. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sole-Magdalena A, Revuelta EG, Menénez-Díaz I, Calavia MG, Cobo T, García-Suárez O, Pérez-Piñera P, De Carlos F, Cobo J and Vega JA: Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins. Microsc Res Tech. 74:457–463. 2011. View Article : Google Scholar | |
Hildebrand MS, de Silva MG, Klockars T, Rose E, Price M, Smith RJ, McGuirt WT, Christopoulos H, Petit C and Dahl HH: Characterisation of DRASIC in the mouse inner ear. Hear Res. 190:149–160. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grunder S, Geissler HS, Bassler EL and Ruppersberg JP: A new member of acid-sensing ion channels from pituitary gland. Neuroreport. 11:1607–1611. 2000. View Article : Google Scholar : PubMed/NCBI | |
Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A and Fugger L: Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 13:1483–1489. 2007. View Article : Google Scholar : PubMed/NCBI | |
Omerbasic D, Schuhmacher LN, Bernal Sierra YA, Smith ES and Lewin GR: ASICs and mammalian mechanoreceptor function. Neuropharmacology. 94:80–86. 2015. View Article : Google Scholar | |
Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S and Lingueglia E: Acid-sensing ion channels (ASICs): Pharmacology and implication in pain. Pharmacol Ther. 128:549–558. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vann KT and Xiong ZG: Acid-sensing ion channel 1 contributes to normal olfactory function. Behav Brain Res. 337:246–251. 2018. View Article : Google Scholar | |
Ettaiche M, Deval E, Cougnon M, Lazdunski M and Voilley N: Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci. 26:5800–5809. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr and Welsh MJ: The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 34:463–477. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM and Welsh MJ: Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA. 101:6752–6757. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD and Welsh MJ: Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci USA. 101:3621–3626. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dwyer JM, Rizzo SJ, Neal SJ, Lin Q, Jow F, Arias RL, Rosenzweig-Lipson S, Dunlop J and Beyer CE: Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology (Berl). 203:41–52. 2009. View Article : Google Scholar | |
Gibbons DD, Kutschke WJ, Weiss RM and Benson CJ: Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle. J Physiol. 593:4575–4587. 2015. View Article : Google Scholar : PubMed/NCBI | |
Storozhuk M, Cherninskyi A, Maximyuk O, Isaev D and Krishtal O: Acid-sensing ion channels: Focus on physiological and some pathological roles in the brain. Curr Neuropharmacol. 19:1570–1589. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee CY, Huang TJ, Wu MH, Li YY and Lee KD: High expression of acid-sensing ion channel 2 (ASIC2) in bone cells in osteoporotic vertebral fractures. Biomed Res Int. 2019:47142792019. View Article : Google Scholar : PubMed/NCBI | |
Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, Tan YX, Ji SP, Liang YM and Gong F: The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J Exp Clin Cancer Res. 36:1302017. View Article : Google Scholar : PubMed/NCBI | |
Holzer P: Acid sensing by visceral afferent neurones. Acta Physiol (Oxf). 201:63–75. 2011. View Article : Google Scholar | |
Kang JY and Yap I: Acid and gastric ulcer pain. J Clin Gastroenterol. 13:514–516. 1991. View Article : Google Scholar : PubMed/NCBI | |
Dang K, Bielfeldt K, Lamb K and Gebhart GF: Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol. 93:3112–3119. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sugiura T, Dang K, Lamb K, Bielefeldt K and Gebhart GF: Acid-sensing properties in rat gastric sensory neurons from normal and ulcerated stomach. J Neurosci. 25:2617–2627. 2005. View Article : Google Scholar : PubMed/NCBI | |
Krishtal OA and Pidoplichko VI: A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience. 6:2599–2601. 1981. View Article : Google Scholar : PubMed/NCBI | |
Schicho R, Florian W, Liebmann I, Holzer P and Lippe IT: Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci. 19:1811–1818. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bielefeldt K and Davis BM: Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am J Physiol Gastrointest Liver Physiol. 294:G130–G138. 2008. View Article : Google Scholar | |
Leffler A, Monter B and Koltzenburg M: The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice. Neuroscience. 139:699–709. 2006. View Article : Google Scholar : PubMed/NCBI | |
Page AJ, Martin CM and Blackshaw LA: Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol. 87:2095–2103. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brierley SM, Jones RC III, Gebhart GF and Blackshaw LA: Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology. 127:166–178. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ and Chu XP: Acid-sensing ion channels and mechanosensation. Int J Mol Sci. 22:48102021. View Article : Google Scholar : PubMed/NCBI | |
Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sánchez EE, Burlingame AL, Basbaum AI and Julius D: A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature. 479:410–414. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Jang JH, Price MP, Gautam M, Benson CJ, Gong H, Welsh MJ and Brennan TJ: Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity. PLoS One. 7:e352252012. View Article : Google Scholar : PubMed/NCBI | |
Lamb K, Kang YM, Gebhart GF and Bielefeldt K: Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology. 125:1410–1418. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wultsch T, Painsipp E, Shahbazian A, Mitrovic M, Edelsbrunner M, Lazdunski M, Waldmann R and Holzer P: Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach-brainstem axis. Pain. 134:245–253. 2008. View Article : Google Scholar | |
Matricon J, Muller E, Accarie A, Meleine M, Etienne M, Voilley N, Busserolles J, Eschalier A, Lazdunski M, Bourdu S, et al: Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome. Neurogastroenterol Motil. 25:e740–e754. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bourdu S, Dapoigny M, Chapuy E, Artigue F, Vasson MP, Dechelotte P, Bommelaer G, Eschalier A and Ardid D: Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology. 128:1996–2008. 2005. View Article : Google Scholar : PubMed/NCBI | |
Matricon J, Gelot A, Etienne M, Lazdunski M, Muller E and Ardid D: Spinal cord plasticity and acid-sensing ion channels involvement in a rodent model of irritable bowel syndrome. Eur J Pain. 15:335–343. 2011. View Article : Google Scholar | |
Miwa H, Kondo T, Oshima T, Fukui H, Tomita T and Watari J: Esophageal sensation and esophageal hypersensitivity-overview from bench to bedside. J Neurogastroenterol Motil. 16:353–362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guarino MP, Cheng L, Ma J, Harnett K, Biancani P, Altomare A, Panzera F, Behar J and Cicala M: Increased TRPV1 gene expression in esophageal mucosa of patients with non-erosive and erosive reflux disease. Neurogastroenterol Motil. 22:746–751 e219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Omori M, Yokoyama M, Matsuoka Y, Kobayashi H, Mizobuchi S, Itano Y, Morita K and Ichikawa H: Effects of selective spinal nerve ligation on acetic acid-induced nociceptive responses and ASIC3 immunoreactivity in the rat dorsal root ganglion. Brain Res. 1219:26–31. 2008. View Article : Google Scholar : PubMed/NCBI | |
Staniland AA and McMahon SB: Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain. 13:554–563. 2009. View Article : Google Scholar | |
Yang M, Li ZS, Chen DF, Zou DW, Xu XR, Fang DC, Xu GM, Stephens RL and Wang ZG: Quantitative assessment and characterization of visceral hyperalgesia evoked by esophageal balloon distention and acid perfusion in patients with functional heartburn, nonerosive reflux disease, and erosive esophagitis. Clin J Pain. 26:326–331. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han X, Zhang Y, Lee A, Li Z, Gao J, Wu X, Zhao J, Wang H, Chen D, Zou D and Owyang C: Upregulation of acid sensing ion channels is associated with esophageal hypersensitivity in GERD. FASEB J. 36:e220832022. View Article : Google Scholar | |
Webb BA, Chimenti M, Jacobson MP and Barber DL: Dysregulated pH: A perfect storm for cancer progression. Nat Rev Cancer. 11:671–677. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Ye QH, Yuan FL, Gu YL, Li JP, Shi YH, Shen XM, Bo-Liu and Lin ZH: Involvement of acid-sensing ion channel 1alpha in hepatic carcinoma cell migration and invasion. Tumour Biol. 36:4309–4317. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Yuan FL, Gu YL, Li X, Liu MF, Shen XM, Liu B and Zhu MQ: Over-expression of ASIC1a promotes proliferation via activation of the β-catenin/LEF-TCF axis and is associated with disease outcome in liver cancer. Oncotarget. 8:25977–25988. 2017. View Article : Google Scholar | |
Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F and Liu CF: ASICs mediate the modulatory effect by paeoniflorin on α-synuclein autophagic degradation. Brain Res. 1396:77–87. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou RP, Wu XS, Wang ZS, Xie YY, Ge JF and Chen FH: Novel insights into acid-sensing ion channels: Implications for degenerative diseases. Aging Dis. 7:491–501. 2015. View Article : Google Scholar | |
Zhang Q, Wu S, Zhu J, Chai D and Gan H: Down-regulation of ASIC1 suppressed gastric cancer via inhibiting autophagy. Gene. 608:79–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu FR, Pan CX, Rong C, Xia Q, Yuan FL, Tang J, Wang XY, Wang N, Ni WL and Chen FH: Inhibition of acid-sensing ion channel 1a in hepatic stellate cells attenuates PDGF-induced activation of HSCs through MAPK pathway. Mol Cell Biochem. 395:199–209. 2014. View Article : Google Scholar | |
Zhu Y, Pan X, Du N, Li K, Hu Y, Wang L, Zhang J, Liu Y, Zuo L, Meng X, et al: ASIC1a regulates miR-350/SPRY2 by N6 -methyladenosine to promote liver fibrosis. FASEB J. 34:14371–14388. 2020. View Article : Google Scholar : PubMed/NCBI | |
de Bie P, van de Sluis B, Burstein E, van de Berghe PV, Muller P, Berger R, Gitlin JD, Wijmenga C and Klomp LW: Distinct Wilson's disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology. 133:1316–1326. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Huang H, Luan S, Liu H, Ye M and Wu F: Inhibition of ASIC1a-Mediated ERS improves the activation of HSCs and copper transport under copper load. Front Pharmacol. 12:6532722021. View Article : Google Scholar : PubMed/NCBI | |
Yu LX and Schwabe RF: The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Andersen AP, Moreira JM and Pedersen SF: Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci. 369:201300982014. View Article : Google Scholar : PubMed/NCBI | |
Javle MM, Gibbs JF, Iwata KK, Pak Y, Rutledge P, Yu J, Black JD, Tan D and Khoury T: Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer. Ann Surg Oncol. 14:3527–3533. 2007. View Article : Google Scholar : PubMed/NCBI | |
von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, et al: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 137:361–371. 371.e1–5. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Zhu S, Wang B, Li X, Liu Y, Qin Q, Gong Q, Niu Y, Xiang C, Chen J, et al: Chronic pancreatitis and pancreatic cancer demonstrate active epithelial-mesenchymal transition profile, regulated by miR-217-SIRT1 pathway. Cancer Lett. 355:184–191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peppicelli S, Bianchini F, Torre E and Calorini L: Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin Exp Metastasis. 31:423–433. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Li X, Niu Y, Zhu S, Jin Y, Deng S, Chen J, Liu Y, He C, Yin T, et al: MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1. Oncotarget. 6:39661–39675. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Zhou HY, Deng SC, Deng SJ, He C, Li X, Chen JY, Jin Y, Hu ZL, Wang F, et al: ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway. Cell Death Dis. 8:e28062017. View Article : Google Scholar | |
Prevarskaya N, Skryma R and Shuba Y: Calcium in tumour metastasis: New roles for known actors. Nat Rev Cancer. 11:609–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jaffe AB and Hall A: Rho GTPases: Biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O'Connor KL, Gao T and Evers BM: mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71:3246–3256. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Tenorio M, Porras-González C, Castellano A, Del Valle-Rodríguez A, López-Barneo J and Ureña J: Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels: New mechanism for depolarization-evoked mammalian arterial contraction. Circ Res. 108:1348–1357. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fais S, De Milito A, You H and Qin W: Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res. 67:10627–10630. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen JL, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J, Dewhirst M, West M and Chi JT: The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet. 4:e10002932008. View Article : Google Scholar : PubMed/NCBI | |
Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, Gatenby RA and Gillies RJ: Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis. 25:411–425. 2008. View Article : Google Scholar : PubMed/NCBI | |
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, et al: Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73:1524–1535. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fukumura D, Xu L, Chen Y, Gohongi T, Seed B and Jain RK: Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 61:6020–6024. 2001.PubMed/NCBI | |
Peuker K, Muff S, Wang J, Künzel S, Bosse E, Zeissig Y, Luzzi G, Basic M, Strigli A, Ulbricht A, et al: Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med. 22:506–515. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK, Schulze-Luehrmann J, Santner-Nanan B, Feoktistova E, König T, et al: Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity. 16:881–895. 2002. View Article : Google Scholar : PubMed/NCBI | |
Weigmann B, Lehr HA, Yancopoulos G, Valenzuela D, Murphy A, Stevens S, Schmidt J, Galle PR, Rose-John S and Neurath MF: The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. J Exp Med. 205:2099–2110. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gerlach K, Daniel C, Lehr HA, Nikolaev A, Gerlach T, Atreya R, Rose-John S, Neurath MF and Weigmann B: Transcription factor NFATc2 controls the emergence of colon cancer associated with IL-6-dependent colitis. Cancer Res. 72:4340–4350. 2012. View Article : Google Scholar : PubMed/NCBI |