1
|
Shah JS, Sabouni R, Vaught KCC, Owen CM,
Albertini DF and Segars JH: Biomechanics and mechanical signaling
in the ovary: A systematic review. J Assist Reprod Genet.
35:1135–1148. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Green LJ and Shikanov A: In vitro culture
methods of preantral follicles. Theriogenology. 86:229–238. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
West ER, Shea LD and Woodruff TK:
Engineering the follicle microenvironment. Semin Reprod Med.
25:287–299. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Simon LE, Kumar TR and Duncan FE: In vitro
ovarian follicle growth: A comprehensive analysis of key protocol
variables. Biol Reprod. 103:455–470. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang T, He M, Zhao L, Qin S, Zhu Z, Du X,
Zhou B, Yang Y, Liu X, Xia G, et al: HDAC6 regulates primordial
follicle activation through mTOR signaling pathway. Cell Death Dis.
12:5592021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Guo R and Pankhurst MW: Accelerated
ovarian reserve depletion in female anti Müllerian hormone knockout
mice has no effect on lifetime fertility†. Biol Reprod.
102:915–922. 2020. View Article : Google Scholar
|
7
|
Chen J, Liu W, Lee KF, Liu K, Wong BPC and
Yeung WSB: Overexpression of Lin28a induces a primary ovarian
insufficiency phenotype via facilitation of primordial follicle
activation in mice. Mole Cell Endocrinol. 539:1114602022.
View Article : Google Scholar
|
8
|
Zhang J, Yan L, Wang Y, Zhang S, Xu X, Dai
Y, Zhao S, Li Z, Zhang Y, Xia G, et al: In vivo and in vitro
activation of dormant primordial follicles by EGF treatment in
mouse and human. Clin Transl Med. 10:e1822020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu J and Gridley T: Notch2 is required in
somatic cells for break-down of ovarian germ-cell nests and
formation of primordial follicles. BMC Biol. 11:132013. View Article : Google Scholar
|
10
|
Zhang H and Liu K: Cellular and molecular
regulation of the activation of mammalian primordial follicles:
Somatic cells initiate follicle activation in adulthood. Hum Reprod
Update. 21:779–786. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang K, Wang Y, Zhang T, He M, Sun G, Wen
J, Yan H, Cai H, Yong C, Xia G and Wang C: JAK signaling regulates
germline cyst breakdown and primordial follicle formation in mice.
Biol Open. 7:bio0294702018.
|
12
|
Wang ZP, Mu XY, Guo M, Wang YJ, Teng Z,
Mao GP, Niu WB, Feng LZ, Zhao LH and Xia GL: Transforming growth
factor-β signaling participates in the maintenance of the
primordial follicle pool in the mouse ovary. J Biol Chem.
289:8299–8311. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Komatsu K and Masubuchi S: Increased
supply from blood vessels promotes the activation of dormant
primordial follicles in mouse ovaries. J Reprod Dev. 66:105–113.
2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hea Q, Chengb J and Wang Y: Chronic CaMKII
inhibition reverses cardiac function and cardiac reserve in HF
mice. Life Sci. 219:122–128. 2019. View Article : Google Scholar
|
15
|
Zhu Q, Hao L, Shen Q, Pan J, Liu W, Gong
W, Hu L, Xiao W, Wang M, Liu X, et al: CaMK II Inhibition
attenuates ROS dependent necroptosis in acinar cells and protects
against acute pancreatitis in mice. Oxid Med Cell Longev.
17:41873982021.
|
16
|
Altobelli GG, Van Noorden S, Cimini D,
Illario M, Sorriento1 D and Cimini V: Calcium/calmodulin-dependent
kinases can regulate the TSH expression in the rat pituitary. J
Endocrinol Invest. 44:2387–2394. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hoch B, Haase H, Schulze W, Haqemann D,
Morano I, Krause EG and Karczewski P: Differentiation-dependent
expression of cardiac delta-CaMKII isoforms. J Cell Biochem.
68:259–268. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Medvedev S, Stein P and Schultz RM:
Specificity of calcium/calmodulin-dependent protein kinases in
mouse egg activation. Cell Cycle. 13:1482–1488. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jin XL and O'Neill C: The presence and
activation of two essential transcription factors (cAMP response
element-binding protein and cAMP-dependent transcription factor
ATF1) in the two-cell mouse embryo. Biol Reprod. 82:459–468. 2010.
View Article : Google Scholar
|
20
|
Wang J, Xu X, Jia W, Zhao D, Boczek T, Gao
Q, Wang Q, Fu Y, He M, Shi R, et al: Calcium-/calmodulin-dependent
protein kinase II (CaMKII) inhibition induces learning and memory
impairment and apoptosis. Oxid Med Cell Longev. 2021:46350542021.
View Article : Google Scholar :
|
21
|
Johnson CN, Pattanayek R, Potet F, Rebbeck
RT, Blackwell DJ, Nikolaienko R, Sequeira V, Meur RL, Radwański PB,
Davis JP, et al: The CaMKII inhibitor KN93-calmodulin interaction
and implications for calmodulin tuning of NaV1.5 and RyR2 function.
Cell Calcium. 82:1020632019. View Article : Google Scholar :
|
22
|
Yang X, Wu N, Song L and Liu Z:
Intrastriatal injections of KN-93 ameliorates levodopa-induced
dyskinesia in a rat model of Parkinson's disease. Neuropsychiatr
Dis Treat. 9:1213–1220. 2013.PubMed/NCBI
|
23
|
Liu Y, Liang Y, Hou B, Liu M, Yang X, Liu
C, Zhang J, Zhang W, Ma Z and Gu X: The inhibitor of
calcium/calmodulin-dependent protein kinase II KN93 attenuates bone
cancer pain via inhibition of KIF17/NR2B traffiffifficking in mice.
Pharmacol Biochem Behav. 124:19–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Edvinsson L, Povlsen GK, Ahnstedt H and
Waldsee R: CaMKII inhibition with KN93 attenuates endothelin and
serotonin receptor-mediated vasoconstriction and prevents
subarachnoid hemorrhage-induced deficits in sensorimotor function.
J Neuroinflammation. 11:2072014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen W, An P, Quan XZ, Zhang J, Zhou ZY,
Zou LP and Luo HS: Ca2+/calmodulin-dependent protein
kinase II regulates colon cancer proliferation and migration via
ERK1/2 and p38 pathways. World J Gastroenterol. 23:6111–6118. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shin H, Han C, Labuz ML, Kim J, Kim J, Cho
S, Gho YS, Takayama S and Parka J: High-yield isolation of
extracellular vesicles using aqueous two-phase system. Sci Rep.
5:131032015. View Article : Google Scholar : PubMed/NCBI
|
27
|
He Y, Chen Q, Dai J, Cui Y, Zhang C, Wen
X, Li J, Xiao Y, Peng X, Liu M, et al: Single-cell RNA-Seq reveals
a highly coordinated transcriptional program in mouse germ cells
during primordial follicle formation. Aging Cell. 20:e134242021.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bazot M, Robert Y, Mestdagh P, Boudghène F
and Rocourt N: Ovarian functional disorders. J Radiol.
81:1801–1818. 2000.In French.
|
29
|
Fortune JE, Rivera GM and Yang MY:
Follicular development: The role of the follicular microenvironment
in selection of the dominant follicle. Anim Reprod Sci. 82:109–126.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sun L, Chen L, Jiang Y, Zhao Y, Wang F,
Zheng X, Li C and Zhou X: Metabolomic profifiling of ovary in mice
treated with FSH using ultra performance liquid chromatography/mass
spectrometry. Biosci Rep. 38:BSR201809652018. View Article : Google Scholar
|
31
|
Hirshfifield AN: Development of follicles
in the mammalian ovary. Int Rev Cytol. 124:43–101. 1991. View Article : Google Scholar
|
32
|
Li T, Liu X, Gong X, Qiukai E and Zhang X
and Zhang X: microRNA 92b-3p regulate primordial follicle assembly
by targeting TSC1 in neonatal mouse ovaries. Cell Cycle.
18:824–833. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang J, Ge W, Zhai QY, Liu JC, Sun XW, Liu
WX, Li L, Lei CZ, Dyce PW, De Felici M and Shen W: Single-cell
transcriptome landscape of ovarian cells during primordial follicle
assembly in mice. PLoS Biol. 18:e30010252020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bristol-Gould SK, Kreeger PK, Selkirk CG,
Kilen SM, Cook RW, Kipp JL, Shea LD, Mayo KE and Woodruff TE:
Postnatal regulation of germ cells by activin: The establishment of
the initial follicle pool. Dev Biol. 298:132–148. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yin H, Kristensen SG, Jiang H, Rasmussen A
and Andersen CY: Survival and growth of isolated pre-antral
follicles from human ovarian medulla tissue during long-term 3D
culture. Hum Reprod. 31:1531–1539. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhai J, Zhang J, Zhang L, Liu X, Deng W,
Wang H, Zhang Z, Liu W, Chen B, Wu C, et al: Autotransplantation of
the ovarian cortex after in vitro activation for infertility
treatment: A shortened procedure. Hum Reprod. 36:2134–2147. 2021.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Song K, Ma W, Huang C, Ding J, Cui D and
Zhang M: expression pattern of mouse vasa homologue (MVH) in the
ovaries of C57BL/6 female mice. Med Sci Monit. 22:2656–2663. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Georges A, Auguste A, Bessière L, Vanet A,
Todeschini AL and Veitia RA: FOXL2: A central transcription factor
of the ovary. J Mol Endocrinol. 52:R17–R33. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Su Y, Sugiura K, Wigglesworth K, O'Brien
MJ, Affourtit JP, Pangas SA, Matzuk MM and Eppig JJ: Oocyte
regulation of metabolic cooperativity between mouse cumulus cells
and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in
cumulus cells. Development. 135:111–121. 2008. View Article : Google Scholar
|
40
|
Ershov P, Kaluzhskiy L, Mezentsev Y,
Yablokov E, Gnedenko O and Ivanov A: Enzymes in the cholesterol
synthesis pathway: Interactomics in the cancer context.
Biomedicines. 9:8952021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nakamura T, Iwase A, Bayasula B, Nagatomo
Y, Kondo M, Nakahara T, Takikawa S, Goto M, Kotani T, Kiyono T and
Kikkawa F: CYP51A1 induced by growth differentiation factor 9 and
follicle-stimulating hormone in granulosa cells is a possible
predictor for unfertilization. Reprod Sci. 22:377–384. 2015.
View Article : Google Scholar :
|
42
|
Jin Y, Chen Z, Dong J, Wang B, Fan S, Yang
X and Cui M: SREBP1/FASN/cholesterol axis facilitates
radioresistance in colorectal cancer. FEBS Open Bio. 11:1343–1352.
2021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang X, Zhao Z, Fan Q, Li H, Liu LZC and
Liang X: Cholesterol metabolism is decreased in patients with
diminished ovarian reserve. Reprod Biomed Online. 44:185–192. 2022.
View Article : Google Scholar
|