
Hormone supply to the pituitary gland: A comprehensive investigation of female‑related tumors (Review)
- Authors:
- Wenxiu Tian
- Huimin Qi
- Zhimei Wang
- Sen Qiao
- Ping Wang
- Junhong Dong
- Hongmei Wang
-
Affiliations: School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China, Jiangsu Province Hi‑Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210000, P.R. China, Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, D‑66421 Homburg‑Saar, Germany, School of Medicine, Southeast University, Nanjing, Jiangsu 210000, P.R. China - Published online on: August 9, 2022 https://doi.org/10.3892/ijmm.2022.5178
- Article Number: 122
-
Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Birzniece V and Ho KKY: Mechanisms in endocrinology: Paracrine and endocrine control of the growth hormone axis by estrogen. Eur J Endocrinol. 184:R269–R278. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N and Prodam F: Regulation of GH and GH signaling by nutrients. Cells. 10:13762021. View Article : Google Scholar : PubMed/NCBI | |
Donato J Jr, Wasinski F, Furigo IC, Metzger M and Frazão R: Central regulation of metabolism by growth hormone. Cells. 10:1292021. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Huang L, Waters MJ and Chen C: Insulin and growth hormone balance: Implications for obesity. Trends Endocrinol Metab. 31:642–654. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roelfsema F, Yang RJ, Bowers CY and Veldhuis JD: Modulating effects of progesterone on spontaneous nocturnal and ghrelin-induced GH secretion in postmenopausal women. J Clin Endocrinol Metab. 104:2385–2394. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cuny T, Graillon T, Defilles C, Datta R, Zhang S, Figarella-Branger D, Dufour H, Mougel G and Brue T: Characterization of the ability of a, second-generation SST-DA chimeric molecule, TBR-065, to suppress GH secretion from human GH-secreting adenoma cells. Pituitary. 24:351–358. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boguszewski MCS, Carlsson M, Lindberg A, Dahlgren J, Aydin F, Camacho-Hübner C and Hokken-Koelega ACS: Near-adult height after growth hormone treatment in children born prematurely-data from KIGS. J Clin Endocrinol Metab. 105:dgaa2032020. View Article : Google Scholar : PubMed/NCBI | |
Hjelholt AJ, Charidemou E, Griffin JL, Pedersen SB, Gudiksen A, Pilegaard H, Jessen N, Møller N and Jørgensen JOL: Insulin resistance induced by growth hormone is linked to lipolysis and associated with suppressed pyruvate dehydrogenase activity in skeletal muscle: A 2x2 factorial, randomised, crossover study in human individuals. Diabetologia. 63:2641–2653. 2020. View Article : Google Scholar : PubMed/NCBI | |
Binder G: Short stature due to SHOX deficiency: Genotype, phenotype, and therapy. Horm Res Paediatr. 75:81–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
Donato B and Ferreira MJ: Cardiovascular risk in turner syndrome. Rev Port Cardiol (Engl Ed). 37:607–621. 2018.In English, Portuguese. View Article : Google Scholar | |
Muscogiuri G, Formoso G, Pugliese G, Ruggeri RM, Scarano E and Colao A: RESTARE: Prader-Willi syndrome: An uptodate on endocrine and metabolic complications. Rev Endocr Metab Disord. 20:239–250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roberts AE, Allanson JE, Tartaglia M and Gelb BD: Noonan syndrome. Lancet. 381:333–342. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verkauskiene R, Petraitiene I and Albertsson Wikland K: Puberty in children born small for gestational age. Horm Res Paediatr. 80:69–77. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guevara-Aguirre J, Guevara A, Palacios I, Pérez M, Prócel P and Terán E: GH and GHR signaling in human disease. Growth Horm IGF Res. 38:34–38. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boguszewski CL: Individual sensitivity to growth hormone replacement in adults. Rev Endocr Metab Disord. 22:117–14. 2021. View Article : Google Scholar | |
Gasco V, Caputo M, Lanfranco F, Ghigo E and Grottoli S: Management of GH treatment in adult GH deficiency. Best Pract Res Clin Endocrinol Metab. 31:13–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tritos NA and Klibanski A: Effects of growth hormone on bone. Prog Mol Biol Transl Sci. 138:193–211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beckers A, Petrossians P, Hanson J and Daly AF: The causes and consequences of pituitary gigantism. Nat Rev Endocrinol. 14:705–720. 2018. View Article : Google Scholar : PubMed/NCBI | |
Domene HM and Fierro-Carrión G: Genetic disorders of GH action pathway. Growth Horm IGF Res. 38:19–23. 2018. View Article : Google Scholar | |
Villares R, Criado G, Juarranz Y, Lopez-Santalla M, Garcia-Cuesta EM, Rodriguez-Frade JM, Leceta J, Lucas P, Pablos JL, Martínez-A C, et al: Inhibitory role of growth hormone in the induction and progression phases of collagen-induced arthritis. Front Immunol. 9:11652018. View Article : Google Scholar : PubMed/NCBI | |
Kopchick JJ, Berryman DE, Puri V, Lee KY and Jorgensen JOL: The effects of growth hormone on adipose tissue: Old observations, new mechanisms. Nat Rev Endocrinol. 16:135–146. 2020. View Article : Google Scholar : | |
Shukur HH, Hussain-Alkhateeb L, Farholt S, Nørregaard O, Jørgensen AP and Hoybye C: Effects of growth hormone treatment on sleep-related parameters in adults with Prader-Willi syndrome. J Clin Endocrinol Metab. 106:e3634–e3643. 2021. View Article : Google Scholar : PubMed/NCBI | |
Devesa J and Caicedo D: The role of growth hormone on ovarian functioning and ovarian angiogenesis. Front Endocrinol (Lausanne). 10:4502019. View Article : Google Scholar | |
Gong Y, Luo S, Fan P, Zhu H, Li Y and Huang W: Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol. 18:1212020. View Article : Google Scholar : PubMed/NCBI | |
Tesarik J, Galán-Lázaro M, Conde-López C, Chiara-Rapisarda AM and Mendoza-Tesarik R: The effect of GH administration on oocyte and zygote quality in young women with repeated implantation failure after IVF. Front Endocrinol (Lausanne). 11:5195722020. View Article : Google Scholar | |
Subramani R, Nandy SB, Pedroza DA and Lakshmanaswamy R: Role of growth hormone in breast cancer. Endocrinology. 158:1543–1555. 2017. View Article : Google Scholar : PubMed/NCBI | |
Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB and Palavan-Unsal N: Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids. 50:1045–1069. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Li Y, Xu G and Fu C: Growth hormone receptor promotes breast cancer progression via the BRAF/MEK/ERK signaling pathway. FEBS Open Bio. 10:1013–1020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Ng AS, Cai S, Li Q, Yang L and Kerr D: Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 22:e358–e368. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lambert AW and Weinberg RA: Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 21:325–338. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, et al: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baskari S, Govatati S, Madhuri V, Nallabelli N, K PM, Naik S, Poornachandar, Balka S, Tamanam RR and Devi VR: Influence of autocrine growth hormone on NF-κB activation leading to epithelial-mesenchymal transition of mammary carcinoma. Tumour Biol. 39:10104283177191212017. View Article : Google Scholar | |
Chesnokova V and Melmed S: Growth hormone in the tumor microenvironment. Arch Endocrinol Metab. 63:568–575. 2019. View Article : Google Scholar | |
Brittain AL, Basu R, Qian Y and Kopchick JJ: Growth hormone and the epithelial-to-mesenchymal transition. J Clin Endocrinol Metab. 102:3662–3673. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, You ML, Chong QY, Pandey V, Zhuang QS, Liu DX, Ma L, Zhu T and Lobie PE: Autocrine human growth hormone promotes invasive and cancer stem cell-like behavior of hepatocellular carcinoma cells by STAT3 dependent inhibition of CLAUDIN-1 expression. Int J Mol Sci. 18:12742017. View Article : Google Scholar : | |
Neggers SJ, Muhammad A and van der Lely AJ: Pegvisomant treatment in acromegaly. Neuroendocrinology. 103:59–65. 2016. View Article : Google Scholar | |
Tritos NA and Biller BM: Pegvisomant: A growth hormone receptor antagonist used in the treatment of acromegaly. Pituitary. 20:129–135. 2017. View Article : Google Scholar | |
Kuhn E and Chanson P: Cabergoline in acromegaly. Pituitary. 20:121–128. 2017. View Article : Google Scholar | |
Chanson P: Medical treatment of acromegaly with dopamine agonists or somatostatin analogs. Neuroendocrinology. 103:50–58. 2016. View Article : Google Scholar | |
Maffezzoni F, Formenti AM, Mazziotti G, Frara S and Giustina A: Current and future medical treatments for patients with acromegaly. Expert Opin Pharmacother. 17:1631–1642. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang JW, Li Y, Mao ZG, Hu B, Jiang XB, Song BB, Wang X, Zhu YH and Wang HJ: Clinical applications of somatostatin analogs for growth hormone-secreting pituitary adenomas. Patient Prefer Adherence. 8:43–51. 2014.PubMed/NCBI | |
Colao A, Grasso LFS, Giustina A, Melmed S, Chanson P, Pereira AM and Pivonello R: Acromegaly. Nat Rev Dis Primers. 5:202019. View Article : Google Scholar : PubMed/NCBI | |
Valea A, Ghervan C, Carsote M, Morar A, Iacob I, Tomesc F, Pop DD and Georgescu C: Effects of combination therapy: Somatostatin analogues and dopamine agonists on GH and IGF1 levels in acromegaly. Clujul Med. 88:310–313. 2015. | |
Augustine RA, Ladyman SR, Bouwer GT, Alyousif Y, Sapsford TJ, Scott V, Kokay IC, Grattan DR and Brown CH: Prolactin regulation of oxytocin neurone activity in pregnancy and lactation. J Physiol. 595:3591–3605. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Luo J, Zhang C, Ma Y, Sun S, Zhang T and Loor JJ: Mechanism of prolactin inhibition of miR-135b via methylation in goat mammary epithelial cells. J Cell Physiol. 233:651–662. 2018. View Article : Google Scholar | |
Borba VV, Zandman-Goddard G and Shoenfeld Y: Prolactin and autoimmunity. Front Immunol. 9:732018. View Article : Google Scholar : PubMed/NCBI | |
García-Rizo C, Vázquez-Bourgon J, Labad J, Ortiz García de la Foz V, Gómez-Revuelta M, Juncal Ruiz M and Crespo-Facorro B: Prolactin, metabolic and immune parameters in naïve subjects with a first episode of psychosis. Prog Neuropsychopharmacol Biol Psychiatry. 110:1103322021. View Article : Google Scholar | |
Bernard V, Young J and Binart N: Prolactin-a pleiotropic factor in health and disease. Nat Rev Endocrinol. 15:356–365. 2019. View Article : Google Scholar | |
Bernard V, Young J, Chanson P and Binart N: New insights in prolactin: Pathological implications. Nat Rev Endocrinol. 11:265–275. 2015. View Article : Google Scholar | |
Moghbeli M: Genetics of recurrent pregnancy loss among Iranian population. Mol Genet Genomic Med. 7:e8912019. View Article : Google Scholar : | |
Kavarthapu R and Dufau ML: Essential role of endogenous prolactin and CDK7 in estrogen-induced upregulation of the prolactin receptor in breast cancer cells. Oncotarget. 8:27353–27363. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ezoe K, Miki T, Ohata K, Fujiwara N, Yabuuchi A, Kobayashi T and Kato K: Prolactin receptor expression and its role in trophoblast outgrowth in human embryos. Reprod Biomed Online. 42:699–707. 2021. View Article : Google Scholar | |
Mestre Citrinovitz AC, Langer L, Strowitzki T and Germeyer A: Resveratrol enhances decidualization of human endometrial stromal cells. Reproduction. 159:453–463. 2020. View Article : Google Scholar : PubMed/NCBI | |
Napso T, Yong HEJ, Lopez-Tello J and Sferruzzi-Perri AN: The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol. 9:10912018. View Article : Google Scholar : PubMed/NCBI | |
Kalu E, Bhaskaran S, Thum MY, Vishwanatha R, Croucher C, Sherriff E, Ford B and Bansal AS: Serial estimation of Th1:th2 cytokines profile in women undergoing in-vitro fertilization-embryo transfer. Am J Reprod Immunol. 59:206–211. 2008. View Article : Google Scholar : PubMed/NCBI | |
Soh MC and Moretto M: The use of biologics for autoimmune rheumatic diseases in fertility and pregnancy. Obstet Med. 13:5–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Borba VV, Zandman-Goddard G and Shoenfeld Y: Prolactin and autoimmunity: The hormone as an inflammatory cytokine. Best Pract Res Clin Endocrinol Metab. 33:1013242019. View Article : Google Scholar | |
Proietto S, Cortasa SA, Corso MC, Inserra PIF, Charif SE, Schmidt AR, Di Giorgio NP, Lux-Lantos V, Vitullo AD, Dorfman VB and Halperin J: Prolactin is a strong candidate for the regulation of luteal steroidogenesis in vizcachas (Lagostomus maximus). Int J Endocrinol. 2018:19106722018. View Article : Google Scholar : | |
Trott JF, Schennink A, Petrie WK, Manjarin R, VanKlompenberg MK and Hovey RC: Triennial lactation symposium: Prolactin: The multifaceted potentiator of mammary growth and function. J Anim Sci. 90:1674–1686. 2012. View Article : Google Scholar | |
Chen Y, Moutal A, Navratilova E, Kopruszinski C, Yue X, Ikegami M, Chow M, Kanazawa I, Bellampalli SS, Xie J, et al: The prolactin receptor long isoform regulates nociceptor sensitization and opioid-induced hyperalgesia selectively in females. Sci Transl Med. 12:eaay75502020. View Article : Google Scholar : PubMed/NCBI | |
Anderson MG, Zhang Q, Rodriguez LE, Hecquet CM, Donawho CK, Ansell PJ, Ansell PJ and Reilly EB: ABBV-176, a PRLR antibody drug conjugate with a potent DNA-damaging PBD cytotoxin and enhanced activity with PARP inhibition. BMC Cancer. 21:6812021. View Article : Google Scholar | |
Li D, San M, Zhang J, Yang A, Xie W, Chen Y, Lu X, Zhang Y, Zhao M, Feng X and Zheng Y: Oxytocin receptor induces mammary tumorigenesis through prolactin/p-STAT5 pathway. Cell Death Dis. 12:5882021. View Article : Google Scholar : PubMed/NCBI | |
Borcherding DC, Hugo ER, Fox SR, Jacobson EM, Hunt BG, Merino EJ and Ben-Jonathan N: Suppression of breast cancer by small molecules that block the prolactin receptor. Cancers (Basel). 13:26622021. View Article : Google Scholar | |
O'Leary KA, Rugowski DE, Shea MP, Sullivan R, Moser AR and Schuler LA: Prolactin synergizes with canonical Wnt signals to drive development of ER+ mammary tumors via activation of the Notch pathway. Cancer Lett. 503:231–239. 2021. View Article : Google Scholar : PubMed/NCBI | |
Campbell KM, O'Leary KA, Rugowski DE, Mulligan WA, Barnell EK, Skidmore ZL, Krysiak K, Griffith M, Schuler LA and Griffith OL: A spontaneous aggressive ERα+ mammary tumor model is driven by Kras activation. Cell Rep. 28:1526–1537.e4. 2019. View Article : Google Scholar | |
MacDonald TM, Thomas LN, Daze E, Marignani P, Barnes PJ and Too CK: Prolactin-inducible EDD E3 ubiquitin ligase promotes TORC1 signalling, anti-apoptotic protein expression, and drug resistance in breast cancer cells. Am J Cancer Res. 9:1484–1503. 2019.PubMed/NCBI | |
Chen X, Wu D, Zheng Y, Liu X and Wang J: Preparation of a growth hormone receptor/prolactin receptor bispecific antibody antagonist which exhibited anti-cancer activity. Front Pharmacol. 11:5984232020. View Article : Google Scholar : PubMed/NCBI | |
Dandawate P, Kaushik G, Ghosh C, Standing D, Ali Sayed AA, Choudhury S, Subramaniam D, Manzardo A, Banerjee T, Santra S, et al: Diphenylbutylpiperidine antipsychotic drugs inhibit prolactin receptor signaling to reduce growth of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 158:1433–1449.e27. 2020. View Article : Google Scholar | |
Ramirez-Hernandez G, Adan-Castro E, Diaz-Lezama N, Ruiz-Herrera X, Martinez de la Escalera G, Macotela Y and Clapp C: Global deletion of the prolactin receptor aggravates streptozotocin-induced diabetes in mice. Front Endocrinol (Lausanne). 12:6196962021. View Article : Google Scholar | |
Wen Y, Wang Y, Chelariu-Raicu A, Stur E, Liu Y, Corvigno S, Bartsch F, Redfern L, Zand B, Kang Y, et al: Blockade of the short form of prolactin receptor induces FOXO3a/EIF-4EBP1-mediated cell death in uterine cancer. Mol Cancer Ther. 19:1943–1954. 2020. View Article : Google Scholar : PubMed/NCBI | |
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A and Candolfi M: The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: What do we know so far? Expert Opin Ther Targets. 24:1121–1133. 2020. View Article : Google Scholar | |
Boutillon F, Pigat N, Sala LS, Reyes-Gomez E, Moriggl R, Guidotti JE and Goffin V: STAT5a/b deficiency delays, but does not prevent, prolactin-driven prostate tumorigenesis in mice. Cancers (Basel). 11:9292019. View Article : Google Scholar | |
ivero-Segura NA, Flores-Soto E, García de la Cadena S, Coronado-Mares I, Gomez-Verjan JC, Ferreira DG, Cabrera-Reyes EA, Lopes LV, Massieu L and Cerbón M: Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-κB activation. PLoS One. 12:e01769102017. View Article : Google Scholar | |
Yousefvand S, Hadjzadeh MA, Vafaee F and Dolatshad H: The protective effects of prolactin on brain injury. Life Sci. 263:1185472020. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Vicchi F, De Winne C, Brie B, Sorianello E, Ladyman SR and Becu-Villalobos D: Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol. 32:e128882020. View Article : Google Scholar | |
Charoenphandhu N and Krishnamra N: Prolactin is an important regulator of intestinal calcium transport. Can J Physiol Pharmacol. 85:569–581. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ponce AJ, Galván-Salas T, Lerma-Alvarado RM, Ruiz-Herrera X, Hernández-Cortés T, Valencia-Jiménez R, Cárdenas-Rodríguez LE, Martínez de la Escalera G, Clapp C and Macotela Y: Low prolactin levels are associated with visceral adipocyte hypertrophy and insulin resistance in humans. Endocrine. 67:331–343. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tatum RC, McGowan CM and Ireland JL: Efficacy of pergolide for the management of equine pituitary pars intermedia dysfunction: A systematic review. Vet J. 266:1055622020. View Article : Google Scholar : PubMed/NCBI | |
Harris K, Murphy KE, Horn D, MacGilivray J and Yudin MH: Safety of cabergoline for postpartum lactation inhibition or suppression: A systematic review. J Obstet Gynaecol Can. 42:308–315.e20. 2020. View Article : Google Scholar | |
Krysiak R and Okopień B: Sexual functioning in hyperprolactinemic patients treated with cabergoline or bromocriptine. Am J Ther. 26:e433–e440. 2019. View Article : Google Scholar | |
Khalil G, Khan FA, Jamal QM, Saleem A, Masroor H and Abbas K: Change in insulin sensitivity and lipid profile after dopamine agonist therapy in patients with prolactinoma. Cureus. 13:e178242021.PubMed/NCBI | |
Peuskens J, Pani L, Detraux J and De Hert M: The effects of novel and newly approved antipsychotics on serum prolactin levels: A comprehensive review. CNS Drugs. 28:421–453. 2014.PubMed/NCBI | |
Drobnis EZ and Nangia AK: Psychotropics and male reproduction. Adv Exp Med Biol. 1034:63–101. 2017. View Article : Google Scholar : PubMed/NCBI | |
Safer DJ, Calarge CA and Safer AM: Prolactin serum concentrations during aripiprazole treatment in youth. J Child Adolesc Psychopharmacol. 23:282–289. 2013. View Article : Google Scholar : PubMed/NCBI | |
Davis JR and McNeilly AS: Is pituitary gene therapy realistic? Clin Endocrinol (Oxf). 55:427–433. 2001. View Article : Google Scholar | |
Filatov M, Khramova Y, Parshina E, Bagaeva T and Semenova M: Influence of gonadotropins on ovarian follicle growth and development in vivo and in vitro. Zygote. 25:235–243. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ulloa-Aguirre A and Lira-Albarran S: Clinical applications of gonadotropins in the male. Prog Mol Biol Transl Sci. 143:121–174. 2016. View Article : Google Scholar : PubMed/NCBI | |
Das N and Kumar TR: Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol. 60:R131–R155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Casarini L, Santi D, Brigante G and Simoni M: Two hormones for one receptor: Evolution, biochemistry, actions, and pathophysiology of LH and hCG. Endocr Rev. 39:549–592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Troppmann B, Kleinau G, Krause G and Gromoll J: Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update. 19:583–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Son WY, Das M, Shalom-Paz E and Holzer H: Mechanisms of follicle selection and development. Minerva Ginecol. 63:89–102. 2011.PubMed/NCBI | |
Themmen APN and Huhtaniemi IT: Mutations of gonadotropins and gonadotropin receptors: Elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 21:551–583. 2000. View Article : Google Scholar : PubMed/NCBI | |
Duan J, Xu P, Cheng X, Mao C, Croll T, He X, Shi J, Luan X, Yin W, You E, et al: Structures of full-length glycoprotein hormone receptor signalling complexes. Nature. 598:688–692. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Dias JA and He X: Structural biology of glycoprotein hormones and their receptors: Insights to signaling. Mol Cell Endocrinol. 382:424–451. 2014. View Article : Google Scholar | |
Abbara A, Clarke SA and Dhillo WS: Clinical potential of kisspeptin in reproductive health. Trends Mol Med. 27:807–823. 2021. View Article : Google Scholar : PubMed/NCBI | |
Skorupskaite K and Anderson RA: Hypothalamic neurokinin signalling and its application in reproductive medicine. Pharmacol Ther. 230:1079602022. View Article : Google Scholar | |
Messina A, Pulli K, Santini S, Acierno J, Känsäkoski J, Cassatella D, Xu C, Casoni F, Malone SA, Ternier G, et al: Neuron-derived neurotrophic factor is mutated in congenital hypogonadotropic hypogonadism. Am J Hum Genet. 106:58–70. 2020. View Article : Google Scholar : | |
Vanacker C, Defazio RA, Sykes CM and Moenter SM: A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice. Elife. 10:e682052021. View Article : Google Scholar : PubMed/NCBI | |
Uenoyama Y, Nagae M, Tsuchida H, Inoue N and Tsukamura H: Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front Endocrinol (Lausanne). 12:7246322021. View Article : Google Scholar | |
Hughes CHK and Murphy BD: Nuclear receptors: Key regulators of somatic cell functions in the ovulatory process. Mol Aspects Med. 78:1009372021. View Article : Google Scholar | |
Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, Liang JN, Carroll RS, Latronico AC, Rønnekleiv OK, et al: MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 130:4486–4500. 2020.PubMed/NCBI | |
Li M, Chen Y, Liao B, Tang J, Zhong J and Lan D: The role of kisspeptin and MKRN3 in the diagnosis of central precocious puberty in girls. Endocr Connect. 10:1147–1154. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sertorio MN, Estadella D, Ribeiro DA and Pisani LP: Could parental high-fat intake program the reproductive health of male offspring? A review. Crit Rev Food Sci Nutr. 1–8. 2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Santoro N, Schauer IE, Kuhn K, Fought AJ, Babcock-Gilbert S and Bradford AP: Gonadotropin response to insulin and lipid infusion reproduces the reprometabolic syndrome of obesity in eumenorrheic lean women: A randomized crossover trial. Fertil Steril. 116:566–574. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hsueh AJ and He J: Gonadotropins and their receptors: Coevolution, genetic variants, receptor imaging, and functional antagonists. Biol Reprod. 99:3–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chu YL, Xu YR, Yang WX and Sun Y: The role of FSH and TGF-β superfamily in follicle atresia. Aging (Albany NY). 10:305–321. 2018. View Article : Google Scholar | |
Smitz J, Wolfenson C, Chappel S and Ruman J: Follicle-stimulating hormone: A review of form and function in the treatment of infertility. Reprod Sci. 23:706–716. 2016. View Article : Google Scholar | |
di Clemente N, Racine C, Pierre A and Taieb J: Anti-Müllerian hormone in female reproduction. Endocr Rev. 42:753–782. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mills EG, Yang L, Nielsen MF, Kassem M, Dhillo WS and Comninos AN: The relationship between bone and reproductive hormones beyond estrogens and androgens. Endocr Rev. 42:691–719. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu D, Li X, Macrae VE, Simoncini T and Fu X: Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol Metab. 29:571–580. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chin KY: The relationship between follicle-stimulating hormone and bone health: Alternative explanation for bone loss beyond oestrogen? Int J Med Sci. 15:1373–1383. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu WX, Zhang YJ, Wang YF, Klinger FG, Tan SJ, Farini D, De Felici M, Shen W and Cheng SF: Protective mechanism of luteinizing hormone and follicle-stimulating hormone against nicotine-induced damage of mouse early folliculogenesis. Front Cell Dev Biol. 9:7233882021. View Article : Google Scholar : PubMed/NCBI | |
Kumariya S, Ubba V, Jha RK and Gayen JR: Autophagy in ovary and polycystic ovary syndrome: Role, dispute and future perspective. Autophagy. 17:2706–2733. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Zhao M, Bo T, Ma S, Yuan Z, Chen W, He Z, Hou X, Liu J, Zhang Z, et al: Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res. 29:151–166. 2019. View Article : Google Scholar : | |
Veldhuis-Vlug AG, Woods GN, Sigurdsson S, Ewing SK, Le PT, Hue TF, Vittinghoff E, Xu K, Gudnason V, Sigurdsson G, et al: Serum FSH is associated with BMD, bone marrow adiposity, and body composition in the AGES-Reykjavik study of older adults. J Clin Endocrinol Metab. 106:e1156–e1169. 2021. View Article : Google Scholar : | |
Wu KC, Ewing SK, Li X, Sigurðsson S, Guðnason V, Kado DM, Hue TF, Woods GN, Veldhuis-Vlug AG, Vittinghoff E, et al: FSH level and changes in bone mass and body composition in older women and men. J Clin Endocrinol Metab. 106:2876–2889. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F and Reis FM: Activin A in mammalian physiology. Physiol Rev. 99:739–780. 2019. View Article : Google Scholar | |
Bernard DJ, Smith CL and Brûlé E: A tale of two proteins: Betaglycan, IGSF1, and the continuing search for the inhibin B receptor. Trends Endocrinol Metab. 31:37–45. 2020. View Article : Google Scholar | |
Peng YJ, Yu H, Hao X, Dong W, Yin X, Lin M, Zheng J and Zhou BO: Luteinizing hormone signaling restricts hematopoietic stem cell expansion during puberty. EMBO J. 37:e989842018. View Article : Google Scholar : PubMed/NCBI | |
Del Castillo LM, Buigues A, Rossi V, Soriano MJ, Martinez J, De Felici M, Lamsira HK, Di Rella F, Klinger FG, Pellicer A and Herraiz S: The cyto-protective effects of LH on ovarian reserve and female fertility during exposure to gonadotoxic alkylating agents in an adult mouse model. Hum Reprod. 36:2514–2528. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xi G, An L, Wang W, Hao J, Yang Q, Ma L, Lu J, Wang Y, Wang W, Zhao W, et al: The mRNA-destabilizing protein tristetraprolin targets 'meiosis arrester' Nppc mRNA in mammalian preovulatory follicles. Proc Natl Acad Sci USA. 118:e20183451182021. View Article : Google Scholar | |
Dalle IA, Paranal R, Zarka J, Paul S, Sasaki K, Li W, Ning J, Short NJ, Ohanian M, Cortes JE, et al: Impact of luteinizing hormone suppression on hematopoietic recovery after intensive chemotherapy in patients with leukemia. Haematologica. 106:1097–1105. 2021. | |
Elias HK and Van den Brink MRM: New option for improving hematological recovery: Suppression of luteinizing hormone. Haematologica. 106:929–931. 2021. | |
Navarro VM: Metabolic regulation of kisspeptin-the link between energy balance and reproduction. Nat Rev Endocrinol. 16:407–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Duffy DM, Ko C, Jo M, Brannstrom M and Curry TE: Ovulation: Parallels with inflammatory processes. Endocr Rev. 40:369–416. 2019. View Article : Google Scholar : | |
Rossi V, Lispi M, Longobardi S, Mattei M, Di Rella F, Salustri A, De Felici M and Klinger FG: LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death Differ. 24:72–82. 2017. View Article : Google Scholar : | |
Li X, Zhou L, Peng G, Liao M, Zhang L, Hu H, Long L, Tang X, Qu H, Shao J, et al: Pituitary P62 deficiency leads to female infertility by impairing luteinizing hormone production. Exp Mol Med. 53:1238–1249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Blair JA, Bhatta S, McGee H and Casadesus G: Luteinizing hormone: Evidence for direct action in the CNS. Horm Behav. 76:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Burnham VL and Thornton JE: Luteinizing hormone as a key player in the cognitive decline of Alzheimer's disease. Horm Behav. 76:48–56. 2015. View Article : Google Scholar : PubMed/NCBI | |
Natanzon Y, Goode EL and Cunningham JM: Epigenetics in ovarian cancer. Semin Cancer Biol. 51:160–169. 2018. View Article : Google Scholar : | |
Kossaï M, Leary A, Scoazec JY and Genestie C: Ovarian cancer: A heterogeneous disease. Pathobiology. 85:41–49. 2018. View Article : Google Scholar | |
Cheung J, Lokman NA, Abraham RD, Macpherson AM, Lee E, Grutzner F, Ghinea N, Oehler MK and Ricciardelli C: Reduced gonadotrophin receptor expression is associated with a more aggressive ovarian cancer phenotype. Int J Mol Sci. 22:712020. View Article : Google Scholar | |
Wang Z and Dong C: Gluconeogenesis in cancer: Function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer. 5:30–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
MacLean DM and Jayaraman V: Acid-sensing ion channels are tuned to follow high-frequency stimuli. J Physiol. 594:2629–2645. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Leng T, Jing L, Jiang N, Chen D, Hu Y, Xiong ZG and Zha XM: Two di-leucine motifs regulate trafficking and function of mouse ASIC2a. Mol Brain. 9:92016. View Article : Google Scholar : PubMed/NCBI | |
Dong HW, Wang K, Chang XX, Jin FF, Wang Q, Jiang XF, Liu JR, Wu YH and Yang C: Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch Toxicol. 93:2993–3003. 2019. View Article : Google Scholar : PubMed/NCBI | |
Echizen K, Hirose O, Maeda Y and Oshima M: Inflammation in gastric cancer: Interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci. 107:391–397. 2016. View Article : Google Scholar : PubMed/NCBI | |
Davenport JR, Cai Q, Ness RM, Milne G, Zhao Z, Smalley WE, Zheng W and Shrubsole MJ: Evaluation of pro-inflammatory markers plasma C-reactive protein and urinary prostaglandin-E2 metabolite in colorectal adenoma risk. Mol Carcinog. 55:1251–1261. 2016. View Article : Google Scholar : | |
Feng D, Zhao T, Yan K, Liang H, Liang J, Zhou Y, Zhao W and Ling B: Gonadotropins promote human ovarian cancer cell migration and invasion via a cyclooxygenase 2-dependent pathway. Oncol Rep. 38:1091–1098. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lau MT, Wong AS and Leung PC: Gonadotropins induce tumor cell migration and invasion by increasing cyclooxygenases expression and prostaglandin E(2) production in human ovarian cancer cells. Endocrinology. 151:2985–2993. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li S, Ji X, Wang R and Miao Y: Follicle-stimulating hormone promoted pyruvate kinase isozyme type M2-induced glycolysis and proliferation of ovarian cancer cells. Arch Gynecol Obstet. 299:1443–1451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang J, Wei Y, Li Q and Wang Q: ACTL6A regulates follicle-stimulating hormone-driven glycolysis in ovarian cancer cells via PGK1. Cell Death Dis. 10:8112019. View Article : Google Scholar : PubMed/NCBI | |
Perez-Juarez CE, Arechavaleta-Velasco F, Mendez C and Díaz-Cueto L: Progranulin expression induced by follicle-stimulating hormone in ovarian cancer cell lines depends on the histological subtype. Med Oncol. 37:592020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Bai M, Ning C, Xie B, Zhang J, Liao H, Xiong J, Tao X, Yan D, Xi X, et al: Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene. 35:2506–2517. 2016. View Article : Google Scholar | |
Zhang M, Zhang M, Wang J, Cai Q, Zhao R, Yu Y, Tai H, Zhang X and Xu C: Retro-inverso follicle-stimulating hormone peptide-mediated polyethylenimine complexes for targeted ovarian cancer gene therapy. Drug Deliv. 25:995–1003. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang MX, Hong SS, Cai QQ, Zhang M, Chen J, Zhang XY and Xu CJ: Transcriptional control of the MUC16 promoter facilitates follicle-stimulating hormone peptide-conjugated shRNA nanoparticle-mediated inhibition of ovarian carcinoma in vivo. Drug Deliv. 25:797–806. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang N, Wu J, Leng T, Yang T, Zhou Y, Jiang Q, Wang B, Hu Y, Ji YH, Simon RP, et al: Region specific contribution of ASIC2 to acidosis-and ischemia-induced neuronal injury. J Cereb Blood Flow Metab. 37:528–540. 2017. View Article : Google Scholar : | |
Liao H, Zhou Q, Gu Y, Duan T and Feng Y: Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep. 27:1873–1888. 2012.PubMed/NCBI | |
Garrido MP, Bruneau N, Vega M, Selman A, Tapia JC and Romero C: Follicle-stimulating hormone promotes nerve growth factor and vascular endothelial growth factor expression in epithelial ovarian cells. Histol Histopathol. 35:961–971. 2020.PubMed/NCBI | |
Zhang J, Sun YF, Xu YM, Shi BJ, Han Y, Luo ZY, Zhao ZM, Hao GM and Gao BL: Effect of endometrium thickness on clinical outcomes in luteal phase short-acting GnRH-a long protocol and GnRH-Ant protocol. Front Endocrinol (Lausanne). 12:5787832021. View Article : Google Scholar | |
Sauerbrun-Cutler MT and Alvero R: Short- and long-term impact of gonadotropin-releasing hormone analogue treatment on bone loss and fracture. Fertil Steril. 112:799–803. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tepekoy F, Uysal F, Acar N, Ustunel I and Akkoyunlu G: The effect of GnRH antagonist cetrorelix on Wnt signaling members in pubertal and adult mouse ovaries. Histochem Cell Biol. 152:423–437. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doroszko M, Chrusciel M, Stelmaszewska J, Slezak T, Anisimowicz S, Plöckinger U, Quinkler M, Bonomi M, Wolczynski S, Huhtaniemi I, et al: GnRH antagonist treatment of malignant adrenocortical tumors. Endocr Relat Cancer. 26:103–117. 2019. View Article : Google Scholar | |
Xu H, Zhao S, Gao X, Wu X, Xia L, Zhang D, Li J, Zhang A and Xu B: GnRH antagonist protocol with cessation of cetrorelix on trigger day improves embryological outcomes for patients with sufficient ovarian reserve. Front Endocrinol (Lausanne). 12:7588962021. View Article : Google Scholar | |
Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org: Practice Committee of the American Society for Reproductive Medicine: Evidence-based treatments for couples with unexplained infertility: A guideline. Fertil Steril. 113:305–322. 2020. View Article : Google Scholar | |
Krzastek SC, Sharma D, Abdullah N, Sultan M, Machen GL, Wenzel JL, Ells A, Chen X, Kavoussi M, Costabile RA, et al: Long-term safety and efficacy of clomiphene citrate for the treatment of hypogonadism. J Urol. 202:1029–1035. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miller GD, Moore C, Nair V, Hill B, Willick SE, Rogol AD and Eichner D: Hypothalamic-pituitary-testicular axis effects and urinary detection following clomiphene administration in males. J Clin Endocrinol Metab. 104:906–914. 2019. View Article : Google Scholar | |
Kirshenbaum M, Haas J, Nahum R, Aizer A, Yinon Y and Orvieto R: The effect of ovarian stimulation on endothelial function-A prospective cohort study using peripheral artery tonometry. J Clin Endocrinol Metab. 105:dgaa6812020. View Article : Google Scholar : PubMed/NCBI |