HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review)
- Authors:
- Xinyi Huang
- Yili Zhang
- Baoyu Qi
- Kai Sun
- Ning Liu
- Bin Tang
- Shengjie Fang
- Liguo Zhu
- Xu Wei
-
Affiliations: Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China, School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China - Published online on: October 27, 2022 https://doi.org/10.3892/ijmm.2022.5197
- Article Number: 141
This article is mentioned in:
Abstract
Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van Diest PJ and van der Wall E: Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 206:291–304. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bentley ER and Little SR: Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev. 178:1139712021. View Article : Google Scholar : PubMed/NCBI | |
Goldstein DS: How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am J Physiol Regul Integr Comp Physiol. 316:R301–R317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suciadi LP, Henrina J, Putra ICS, Cahyadi I and Gunawan HFH: Chronic heart failure: Clinical implications of iron homeostasis disturbances revisited. Cureus. 14:e212242022.PubMed/NCBI | |
Lee SY, Park KH, Yu HG, Kook E, Song WH, Lee G, Koh JT, Shin HI, Choi JY, Huh YH and Ryu JH: Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Res. 7:142019. View Article : Google Scholar : PubMed/NCBI | |
Knowles HJ: Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function. Sci Rep. 10:210722020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Xiao L, Li Y, Qiu M, Yuan Y, Zhou R, Li C, Zhang L, Jiang ZX, Liu M and Zhou X: Osteocytic HIF-1α pathway manipulates bone micro-structure and remodeling via regulating osteocyte terminal differentiation. Front Cell Dev Biol. 9:7215612021. View Article : Google Scholar : PubMed/NCBI | |
Stegen S and Carmeliet G: Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis. Curr Opin Nephrol Hypertens. 28:328–335. 2019. View Article : Google Scholar : PubMed/NCBI | |
Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, Hill DR, Ma X, Lamberg O, Schnizlein MK, et al: Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 31:115–130. 2020. View Article : Google Scholar : PubMed/NCBI | |
Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI | |
Ikeda Y: Novel roles of HIF-PHIs in chronic kidney disease: The link between iron metabolism, kidney function, and FGF23. Kidney Int. 100:14–16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, Tao Y, Liang X, Liu Z, Xing C, et al: Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 381:1001–1010. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Yuan Y, Qian Z, Zhong Z, Lv T, Kuang Y and Yu B: Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med. 169:271–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shao J, Zhang Y, Yang T, Qi J, Zhang L and Deng L: HIF-1α disturbs osteoblasts and osteoclasts coupling in bone remodeling by up-regulating OPG expression. In Vitro Cell Dev Biol Anim. 51:808–814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Wielockx B, Rauner M and Bozec A: Hypoxia-inducible factors regulate osteoclasts in health and disease. Front Cell Dev Biol. 9:6588932021. View Article : Google Scholar : PubMed/NCBI | |
Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, Haigh JJ, Carmeliet G and Schipani E: VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res. 27:596–609. 2012. View Article : Google Scholar : PubMed/NCBI | |
Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 76:39–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Nigris F, Crudele V, Giovane A, Casamassimi A, Giordano A, Garban HJ, Cacciatore F, Pentimalli F, Marquez-Garban DC, Petrillo A, et al: CXCR4/YY1 inhibition impairs VEGF network and angiogenesis during malignancy. Proc Natl Acad Sci USA. 107:14484–14489. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li J, Tao T, Xu J, Liu Z, Zou Z and Jin M: HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model. Int J Mol Med. 45:1027–1036. 2020.PubMed/NCBI | |
Wang Z, Moran E, Ding L, Cheng R, Xu X and Ma JX: PPARα regulates mobilization and homing of endothelial progenitor cells through the HIF-1α/SDF-1 pathway. Invest Ophthalmol Vis Sci. 55:3820–3832. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ, Schipani E and Giaccia AJ: The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 149:63–74. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gerri C, Marass M, Rossi A and Stainier DYR: Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood. 131:963–973. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, et al: Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature. 583:603–608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cerychova R and Pavlinkova G: HIF-1, Metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). 9:4602018. View Article : Google Scholar : PubMed/NCBI | |
Hölscher M, Schäfer K, Krull S, Farhat K, Hesse A, Silter M, Lin Y, Pichler BJ, Thistlethwaite P, El-Armouche A, et al: Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc Res. 94:77–86. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Hickey RP, Yeh JL, Liu D, Dadak A, Young LH, Johnson RS and Giordano FJ: Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 18:1138–1140. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stegen S, Laperre K, Eelen G, Rinaldi G, Fraisl P, Torrekens S, Van Looveren R, Loopmans S, Bultynck G, Vinckier S, et al: HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature. 565:511–515. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ambrose LJ, Abd-Jamil AH, Gomes RS, Carter EE, Carr CA, Clarke K and Heather LC: Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation. J Cardiovasc Pharmacol Ther. 19:574–585. 2014. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 59:379–403. 2019. View Article : Google Scholar : PubMed/NCBI | |
Knutson AK, Williams AL, Boisvert WA and Shohet RV: HIF in the heart: Development, metabolism, ischemia, and atherosclerosis. J Clin Invest. 131:e1375572021. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Zeng H, Ni L, Qi L, Xu Y, Xia L, Yu Y, Liu B, Yang H, Hao H and Li P: HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: The role of sequential administration of Dihydrotanshinone I and Protocatechuic aldehyde in Cardioprotection. Antioxid Redox Signal. 31:227–242. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q and Zhao M: Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother. 128:1103382020. View Article : Google Scholar : PubMed/NCBI | |
Wu LY, He YL and Zhu LL: Possible Role of PHD Inhibitors as Hypoxia-mimicking agents in the maintenance of neural stem cells' self-renewal properties. Front Cell Dev Biol. 6:1692018. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Narayanan S, Xu C, Eliasson Angelstig S, Grünler J, Zhao A, Di Toro A, Bernardi L, Mazzone M, Carmeliet P, et al: Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes. Elife. 11:e707142022. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36:252–259. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Zhou K, Wang Y, Zhou Y, Tian N, Wu Y, Chen D, Zhang D, Wang X, Xu H and Zhang X: Stabilization of HIF-1α by FG-4592 promotes functional recovery and neural protection in experimental spinal cord injury. Brain Res. 1632:19–26. 2016. View Article : Google Scholar : PubMed/NCBI | |
He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R, Chang J, Guo ZN and Yang Y: Biological functions and regulatory mechanisms of hypoxia-inducible factor-1α in Ischemic Stroke. Front Immunol. 12:8019852021. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI | |
Samanta D and Semenza GL: Maintenance of redox homeostasis by hypoxia-inducible factors. Redox Biol. 13:331–335. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji W, Wang L, He S, Yan L, Li T, Wang J, Kong AT, Yu S and Zhang Y: Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS One. 13:e02084742018. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Lu C, Ren X, Wang J, Xu P and Zhang Y: Overexpression of HIF-1α enhances the protective effect of mitophagy on steroid-induced osteocytes apoptosis. Environ Toxicol. 36:2123–2137. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Liu X, Zhao K, Zhu Y, Hu B, Zhou Y, Wang M, Wu Y, Zhang C, Xu J, et al: miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther. 10:652019. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Ma L, Zhang H, Sun W, Zheng L, Liu C and Miao L: EPO could be regulated by HIF-1 and promote osteogenesis and accelerate bone repair. Artif Cells Nanomed Biotechnol. 48:206–217. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nakashima T, Hayashi M and Takayanagi H: New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 23:582–590. 2012. View Article : Google Scholar : PubMed/NCBI | |
Doi K, Murata K, Ito S, Suzuki A, Terao C, Ishie S, Umemoto A, Murotani Y, Nishitani K, Yoshitomi H, et al: Role of Lysine-Specific Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through Hypoxia-Inducible Factor 1α and E2F1. Arthritis Rheumatol. 74:948–960. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Shao Q, Tang Y, Li X, Qi X, Jiang R, Liang Y and Kang F: HIF-1α regulates osteoclast activation and mediates osteogenesis during mandibular bone repair via CT-1. Oral Dis. 28:428–441. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Tang Y, Wu Q, Ji YC, Feng ZF and Kang FW: HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. J Cell Physiol. 234:21182–21192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song X, Tang Y, Zhu J, Tian Y, Song Z, Hu X, Hong C, Cai Y and Kang F: HIF-1α induces hypoxic apoptosis of MLO-Y4 osteocytes via JNK/caspase-3 pathway and the apoptotic-osteocyte-mediated osteoclastogenesis in vitro. Tissue Cell. 67:1014022020. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Hong C, Cai Y, Zhu J, Hu X, Tian Y, Song X, Song Z, Jiang R and Kang F: HIF-1α mediates osteoclast-induced mandibular condyle growth via AMPK signaling. J Dent Res. 99:1377–1386. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Rankin EB, Castellini L, Alcudia JF, LaGory EL, Andersen R, Rhodes SD, Wilson TL, Mohammad KS, Castillo AB, et al: Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 29:817–831. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Yang K, Xiao L, Guo L, Guo C, Yan Y, Qi J, Wang F, Ryffel B, Li C and Deng L: Osteoblast Hypoxia-inducible Factor-1α pathway activation restrains osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1 pathway. Front Immunol. 8:13122017. View Article : Google Scholar : PubMed/NCBI | |
Zou D, Han W, You S, Ye D, Wang L, Wang S, Zhao J, Zhang W, Jiang X, Zhang X and Huang Y: In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Cell Prolif. 44:234–243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wu S, Li Y and Crane JL: Type H blood vessels in bone modeling and remodeling. Theranostics. 10:426–436. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ding W, Xu C, Zhang Y and Chen H: Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis. Arch Osteoporos. 15:52020. View Article : Google Scholar : PubMed/NCBI | |
Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, et al: MiR-497-195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun. 8:160032017. View Article : Google Scholar : PubMed/NCBI | |
Shao J, Liu S, Zhang M, Chen S, Gan S, Chen C, Chen W, Li L and Zhu Z: A dual role of HIF1α in regulating osteogenesis-angiogenesis coupling. Stem Cell Res Ther. 13:592022. View Article : Google Scholar : PubMed/NCBI | |
Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, Gao R and Chen G: Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Res Bull. 140:154–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yao R, Hou W and Bao J: Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans. Bioresour Technol. 244:1188–1192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo K, Yao X, Wu W, Yu Z, Li Z, Ma Z and Liu D: HIF-1α/SDF-1/CXCR4 axis reduces neuronal apoptosis via enhancing the bone marrow-derived mesenchymal stromal cell migration in rats with traumatic brain injury. Exp Mol Pathol. 114:1044162020. View Article : Google Scholar : PubMed/NCBI | |
Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM and Held-Feindt J: Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine. 14:583–597. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Li Z, Wang Y, Zhu X, Hu R and Xu W: Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury. Mol Med Rep. 22:2767–2774. 2020.PubMed/NCBI | |
Tacchini L, Bianchi L, Bernelli-Zazzera A and Cairo G: Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 274:24142–24146. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Fan M, Du F, Gong Q, Bi ZG, Zhu ZJ, Zhu LL and Ke Y: Hypoxic preconditioning increases iron transport rate in astrocytes. Biochim Biophys Acta. 1822:500–508. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Meng F, Hu X, Huang L, Liu H, Liu Z and Li L: Iron overload regulate the cytokine of mesenchymal stromal cells through ROS/HIF-1α pathway in Myelodysplastic syndromes. Leuk Res. 93:1063542020. View Article : Google Scholar : PubMed/NCBI | |
Lok CN and Ponka P: Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem. 274:24147–24152. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL and Choi AM: Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 272:5375–5381. 1997. View Article : Google Scholar : PubMed/NCBI | |
Weinreb O, Mandel S, Youdim MB and Amit T: Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med. 62:52–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML, Wang T, Li JY and Wang ZY: Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol. 280:13–23. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim J, Kim HI, Bang Y, Seol W, Choi HS and Choi HJ: Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells. Neuroreport. 26:380–386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan PZ and Zhai XY: Pretreatment with Roxadustat (FG-4592) attenuates folic acid-induced kidney injury through Antiferroptosis via Akt/GSK-3β/Nrf2 Pathway. Oxid Med Cell Longev. 2020:62869842020.PubMed/NCBI | |
Nakazawa MS, Keith B and Simon MC: Oxygen availability and metabolic adaptations. Nat Rev Cancer. 16:663–673. 2016. View Article : Google Scholar : PubMed/NCBI | |
Piccoli C, D'Aprile A, Ripoli M, Scrima R, Boffoli D, Tabilio A and Capitanio N: The hypoxia-inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions. FEBS Lett. 581:3111–3119. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lequeux A, Noman MZ, Xiao M, Van Moer K, Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, et al: Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene. 40:4725–4735. 2021. View Article : Google Scholar : PubMed/NCBI | |
López-Barneo J and Simon MC: Cellular adaptation to oxygen deficiency beyond the Nobel award. Nat Commun. 11:6072020. View Article : Google Scholar : PubMed/NCBI | |
Loots GG, Robling AG, Chang JC, Murugesh DK, Bajwa J, Carlisle C, Manilay JO, Wong A, Yellowley CE and Genetos DC: Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects. Bone. 116:307–314. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lappin KM, Mills KI and Lappin TR: Erythropoietin in bone homeostasis-Implications for efficacious anemia therapy. Stem Cells Transl Med. 10:836–843. 2021. View Article : Google Scholar : PubMed/NCBI | |
Johnson RW, Schipani E and Giaccia AJ: HIF targets in bone remodeling and metastatic disease. Pharmacol Ther. 150:169–177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W and Jing W: Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J. 36:e225202022. View Article : Google Scholar : PubMed/NCBI | |
Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA and Knowles HJ: Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol. 242:322–333. 2017. View Article : Google Scholar : PubMed/NCBI | |
Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, Summers LJ, Ip CS, Hum JM, Thomas JC, et al: Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. 102:e427–e430. 2017. View Article : Google Scholar : PubMed/NCBI | |
Daryadel A, Bettoni C, Haider T, Imenez Silva PH, Schnitzbauer U, Pastor-Arroyo EM, Wenger RH, Gassmann M and Wagner CA: Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 470:1569–1582. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HX, Fan LH, Peng W, Huang YL and Wu CJ: HIF-1α is a potential molecular target for herbal medicine to treat diseases. Drug Des Devel Ther. 14:4915–4949. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kasper AC, Moon EJ, Hu X, Park Y, Wooten CM, Kim H, Yang W, Dewhirst MW and Hong J: Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations. Bioorg Med Chem Lett. 19:3783–3786. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kwak SH, Stephenson TN, Lee HE, Ge Y, Lee H, Min SM, Kim JH, Kwon DY, Lee YM and Hong J: Evaluation of Manassantin A tetrahydrofuran core region analogues and cooperative therapeutic effects with EGFR inhibition. J Med Chem. 63:6821–6833. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Miao XK, Li JY, Zhang XW, Xu JJ, Zhang JY, Zhou TX, Hu MN, Yang WL and Mou LY: YC-1 potentiates the antitumor activity of gefitinib by inhibiting HIF-1α and promoting the endocytic trafficking and degradation of EGFR in gefitinib-resistant non-small-cell lung cancer cells. Eur J Pharmacol. 874:1729612020. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Dhammu TS, Baarine M, Kim J, Paintlia MK, Singh I and Singh AK: GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α. Behav Brain Res. 340:63–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lei R, Li J, Liu F, Li W, Zhang S, Wang Y, Chu X and Xu J: HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell Cycle. 18:3239–3250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Bowden N, Fragiadaki M, Souilhol C, Hsiao S, Mahmoud M, Allen S, Pirri D, Ayllon BT, Akhtar S, et al: Mechanical activation of hypoxia-inducible Factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler Thromb Vasc Biol. 37:2087–2101. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Huang RT, Hamanaka RB, Krause M, Oh MJ, Kuo CH, Nigdelioglu R, Meliton AY, Witt L, Dai G, et al: HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife. 6:e252172017. View Article : Google Scholar : PubMed/NCBI |