Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review)
- Authors:
- Zufang Liao
- Rongjiong Zheng
- Guofeng Shao
-
Affiliations: Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China, Department of Respiratory Medicine, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315192, P.R. China, Department of Cardiothoracic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China - Published online on: December 5, 2022 https://doi.org/10.3892/ijmm.2022.5210
- Article Number: 7
-
Copyright: © Liao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar | |
Mack M: Inflammation and fibrosis. Matrix Biol. 68-69:106–121. 2018. View Article : Google Scholar | |
Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kleaveland KR, Moore BB and Kim KK: Paracrine functions of fibrocytes to promote lung fibrosis. Expert Rev Respir Med. 8:163–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 123:631–640. 2005. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM and Zhang GZ: Biological functions of microRNAs: A review. J Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar | |
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D and Rudensky AY: Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 142:914–929. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang X, Ju Y, Zhao B, Yan X, Hu J, Shi L, Yang L, Ma Z, Chen L, et al: MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. J Immunol. 191:293–301. 2013. View Article : Google Scholar : PubMed/NCBI | |
Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, et al: miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 208:1189–1201. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM and Baltimore D: NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 108:9184–9189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, et al: Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 5:33442014. View Article : Google Scholar : PubMed/NCBI | |
Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM and O'Connell RM: Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 6:73212015. View Article : Google Scholar : PubMed/NCBI | |
Paterson MR and Kriegel AJ: MiR-146a/b: A family with shared seeds and different roots. Physiol Genomics. 49:243–252. 2017. View Article : Google Scholar : PubMed/NCBI | |
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F and Locati M: Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA. 110:11499–11504. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Jaworski C, Duncan T, Cameron JE, Flemington EK, Hooks JJ and Redmond TM: Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ. Mol Vis. 19:737–750. 2013. | |
Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y and Wang L: FOXP3 controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 75:1703–1713. 2015. View Article : Google Scholar : PubMed/NCBI | |
Taganov KD, Boldin MP, Chang KJ and Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Yang B, Xia L and Zhang H: EZH2 mediates miR-146a-5p/HIF-1 α to alleviate inflammation and glycolysis after acute spinal cord injury. Mediators Inflamm. 2021:55915822021. View Article : Google Scholar | |
Damodaran M, Paul SFD and Venkatesan V: Genetic polymorphisms in miR-146a, miR-196a2 and miR-125a genes and its association in prostate cancer. Pathol Oncol Res. 26:193–200. 2020. View Article : Google Scholar | |
Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, Jeon HS, Park JS and Choi GS: A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res. 33:3233–3239. 2013.PubMed/NCBI | |
Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, et al: A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7:e10021282011. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Tao H, Wang Y, Liu Z, Xu Z, Zhou H, Cai Y, Yao L, Chen B, Liang W, et al: A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure. 27:60–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kang JY and Lee JO: Structural biology of the Toll-like receptor family. Annu Rev Biochem. 80:917–941. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O'Neill LA, Fitzgerald KA and Golenbock DT: The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA. 103:6299–6304. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S and Miyake K: Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun. 368:94–99. 2008. View Article : Google Scholar : PubMed/NCBI | |
De Nardo D: Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine. 74:181–189. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen LF and Greene WC: Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 5:392–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann A, Natoli G and Ghosh G: Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 25:6706–6716. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luo JL, Kamata H and Karin M: IKK/NF-kappaB signaling: Balancing life and death-a new approach to cancer therapy. J Clin Invest. 115:2625–2632. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z and Cao X: MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 183:2150–2158. 2006. View Article : Google Scholar | |
He L, Wang Z, Zhou R, Xiong W, Yang Y, Song N and Qian J: Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed Pharmacother. 133:1109932021. View Article : Google Scholar | |
Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, Han J, Sun H, Ouyang Q, Hua S, et al: Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 13:3060–3079. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Deng Q, Deng X, Zhong W, Liu S and Zhong Z: MicroRNA-146a-5p alleviates lipopolysaccharide-induced NLRP3 inflammasome injury and pro-inflammatory cytokine production via the regulation of TRAF6 and IRAK1 in human umbilical vein endothelial cells (HUVECs). Ann Transl Med. 9:14332021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, et al: Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 10:9561–9578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang XP, Luoreng ZM, Zan LS, Li F and Li N: Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene. J Dairy Sci. 100:7648–7658. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Guo Y, Xu X, Tang T, Sun L, Wang H, Zhou W, Fang L, Li Q and Xie P: miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus Res. 271:1976712019. View Article : Google Scholar | |
Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, Cerovic M, Hill C, Ferrari M, Zucchetti M, et al: Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis. 99:12–23. 2017. View Article : Google Scholar | |
Quinn EM, Wang JH, O'Callaghan G and Redmond HP: MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 8:e622322013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wu Z, Yuan B, Dong Y, Zhang L and Zeng Z: MicroRNA-146a-5p attenuates irradiation-induced and LPS-induced hepatic stellate cell activation and hepatocyte apoptosis through inhibition of TLR4 pathway. Cell Death Dis. 9:222018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, Taganov KD, Zhao JL and Baltimore D: miR-146a controls the resolution of T cell responses in mice. J Exp Med. 209:1655–1670. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lochhead RB, Ma Y, Zachary JF, Baltimore D, Zhao JL, Weis JH, O'Connell RM and Weis JJ: MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog. 10:e10042122014. View Article : Google Scholar : PubMed/NCBI | |
Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M and Natarajan R: Anti-inflammatory role of MicroRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 27:2277–2288. 2016. View Article : Google Scholar : | |
Ammari M, Presumey J, Ponsolles C, Roussignol G, Roubert C, Escriou V, Toupet K, Mausset-Bonnefont AL, Cren M, Robin M, et al: Delivery of miR-146a to Ly6Chigh monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics. 8:5972–5985. 2018. View Article : Google Scholar | |
Hsu YR, Chang SW, Lin YC and Yang CH: MicroRNA-146a alleviates experimental autoimmune anterior uveitis in the eyes of lewis rats. Mediators Inflamm. 2017:96013492017. View Article : Google Scholar | |
Lv F, Huang Y, Lv W, Yang L, Li F, Fan J and Sun J: MicroRNA-146a ameliorates inflammation via TRAF6/NF-κB pathway in intervertebral disc cells. Med Sci Monit. 23:659–664. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bi X, Zhou L, Liu Y, Gu J and Mi QS: MicroRNA-146a deficiency delays wound healing in normal and diabetic mice. Adv Wound Care (New Rochelle). 11:19–27. 2022. View Article : Google Scholar | |
Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, et al: MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60:1065–1075. 2009. View Article : Google Scholar : PubMed/NCBI | |
He X, Tang R, Sun Y, Wang YG, Zhen KY, Zhang DM and Pan WQ: MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine. 13:339–347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R, Townes T and Zhang SX: Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse model of type 1 diabetes. Diabetologia. 55:2533–2545. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elsaeidi F, Bemben MA, Zhao XF and Goldman D: Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci. 34:2632–2644. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fasler-Kan E, Barteneva NS, Ketterer S, Wunderlich K, Reschner A, Nurzhanova A, Flammer J, Huwyler J and Meyer P: Human cytokines activate JAK-STAT signaling pathway in porcine ocular tissue. Xenotransplantation. 20:469–480. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samardzija M, Wenzel A, Aufenberg S, Thiersch M, Remé C and Grimm C: Differential role of Jak-STAT signaling in retinal degenerations. FASEB J. 20:2411–2413. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ye EA and Steinle JJ: miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res. 139:15–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Zhang Y, Liao Z, Zhan W, Wang Y, Peng Y, Yang M, Ma X, Yin G and Ye L: MiR-146a upregulates FOXP3 and suppresses inflammation by targeting HIPK3/STAT3 in allergic conjunctivitis. Ann Transl Med. 10:3442022. View Article : Google Scholar : PubMed/NCBI | |
Li T, Li M, Xu C, Xu X, Ding J, Cheng L and Ou R: miR-146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF-κB signaling by targeting TRAF6. Oncol Rep. 41:2897–2908. 2019.PubMed/NCBI | |
Ferrer-Marín F, Arroyo AB, Bellosillo B, Cuenca EJ, Zamora L, Hernández-Rivas JM, Hernández-Boluda JC, Fernandez-Rodriguez C, Luño E, García Hernandez C, et al: miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia. 34:2648–2659. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Ma J, Zhao H, Xiao C, Zhong H, Ling H, Xie Z, Tian Q, Chen H, Zhang T, et al: Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res Ther. 22:612020. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, et al: Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol. 17:1772017. View Article : Google Scholar : PubMed/NCBI | |
Khan J, Sharma PK and Mukhopadhaya A: Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology. 220:1199–1209. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J and Sola A: Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol. 214:104–113. 2008. View Article : Google Scholar | |
Huen SC and Cantley LG: Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol. 30:199–209. 2015. View Article : Google Scholar | |
Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C and Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 22:317–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, Sakkal S, Samuel CS, Ramsay RG, Deane JA, et al: Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol. 179:1243–1256. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peng X, He F, Mao Y, Lin Y, Fang J, Chen Y, Sun Z, Zhuo Y and Jiang J: miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J Mol Endocrinol. 69:315–327. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X, Pan W, Zhang L, Zhang R, Hu J, et al: MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes. 66:3111–3121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Liu XJ, QunZhou, Xie J, Ma TT, Meng XM and Li J: MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol. 32:46–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Xiang Y, Wang D, Gao J, Liu D, Liu Y, Liu S and Zheng D: Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell. 11:29–40. 2012. View Article : Google Scholar | |
Li Z, Wang S, Zhao W, Sun Z, Yan H and Zhu J: Oxidized low-density lipoprotein upregulates microRNA-146a via JNK and NF-κB signaling. Mol Med Rep. 13:1709–1716. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Huang G, Xu Q, Zhao G, Jiang J, Li Y and Guo Z: miR-146a-5p attenuates allergic airway inflammation by inhibiting the NLRP3 inflammasome activation in macrophages. Int Arch Allergy Immunol. 183:919–930. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Su C, Wei Q, Sun H, Xie J and Nong G: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate diffuse alveolar hemorrhage associated with systemic lupus erythematosus in mice by promoting M2 macrophage polarization via the microRNA-146a-5p/NOTCH1 axis. Immunol Invest. 51:1975–1993. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo S, Ding X, Zhao S, Mou T, Li R and Cao X: Long non-coding RNA CHRF accelerates LPS-induced acute lung injury through microRNA-146a/Notch1 axis. Ann Transl Med. 9:12992021. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, Gao L, Xu H and Guo J: Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 476:471–482. 2021. View Article : Google Scholar | |
Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG and Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 203:2519–2527. 2006. View Article : Google Scholar : PubMed/NCBI | |
Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, Boots AM, Brouwer E and Kroesen BJ: Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 15:115–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yang Y, Guo J, Cui L, Yang L, Li Y, Mou Y, Jia C, Zhang L and Song X: miR-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5b. Allergy. 77:550–558. 2022. View Article : Google Scholar | |
Li B, Wang X, Choi IY, Wang YC, Liu S, Pham AT, Moon H, Smith DJ, Rao DS, Boldin MP and Yang L: miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 127:3702–3716. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang L, Wang L, Yang Y and Wang Y: Forkhead box p3 controls progression of oral lichen planus by regulating microRNA-146a. J Cell Biochem. 119:8862–8871. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhai X, Guo J, Li Y, Yang Y, Wang L, Yang L and Liu F: Long non-coding RNA DQ786243 modulates the induction and function of CD4+ Treg cells through Foxp3-miR-146a-NF-κB axis: Implications for alleviating oral lichen planus. Int Immunopharmacol. 75:1057612019. View Article : Google Scholar | |
Schmidt SV, Nino-Castro AC and Schultze JL: Regulatory dendritic cells: There is more than just immune activation. Front Immunol. 3:2742012. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Lai Y, Zheng J, Chen K, Jiang H and Xu G: MiR-146a promotes tolerogenic properties of dendritic cells and through targeting notch1 signaling. Immunol Invest. 49:555–570. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B and Wang Z: Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol. 29:2814–2823. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stickel N, Hanke K, Marschner D, Prinz G, Köhler M, Melchinger W, Pfeifer D, Schmitt-Graeff A, Brummer T, Heine A, et al: MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia. 31:2732–2741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B and Strobl H: miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 184:4955–4965. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karrich JJ, Jachimowski LC, Libouban M, Iyer A, Brandwijk K, Taanman-Kueter EW, Nagasawa M, de Jong EC, Uittenbogaart CH and Blom B: MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood. 122:3001–3009. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park H, Huang X, Lu C, Cairo MS and Zhou X: MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 290:2831–2841. 2015. View Article : Google Scholar : | |
Xu D, Han Q, Hou Z, Zhang C and Zhang J: miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol. 14:712–720. 2017. View Article : Google Scholar : | |
Pesce S, Squillario M, Greppi M, Loiacono F, Moretta L, Moretta A, Sivori S, Castagnola P, Barla A, Candiani S and Marcenaro E: New miRNA signature heralds human NK cell subsets at different maturation steps: Involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 9:23602018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y and Yu J: Regulation of human natural killer cell IFN-γ production by MicroRNA-146a via targeting the NF-κB signaling pathway. Front Immunol. 9:2932018. View Article : Google Scholar | |
Friedman SL, Sheppard D, Duffield JS and Violette S: Therapy for fibrotic diseases: Nearing the starting line. Sci Transl Med. 5:167sr12013. View Article : Google Scholar : PubMed/NCBI | |
Rosenbloom J, Mendoza FA and Jimenez SA: Strategies for anti-fibrotic therapies. Biochim Biophys Acta. 1832:1088–1103. 2013. View Article : Google Scholar | |
Kalluri R and Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI | |
McAnulty RJ: Fibroblasts and myofibroblasts: Their source, function and role in disease. Int J Biochem Cell Biol. 39:666–671. 2007. View Article : Google Scholar : PubMed/NCBI | |
Beyer C, Schett G, Gay S, Distler O and Distler JHW: Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 11:2202009. View Article : Google Scholar : PubMed/NCBI | |
Lokmic Z, Musyoka J, Hewitson TD and Darby IA: Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 296:139–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
Santos A and Lagares D: Matrix stiffness: The conductor of organ fibrosis. Curr Rheumatol Rep. 20:22018. View Article : Google Scholar : PubMed/NCBI | |
Parker MW, Rossi D, Peterson M, Smith K, Sikström K, White ES, Connett JE, Henke CA, Larsson O and Bitterman PB: Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 124:1622–1635. 2014. View Article : Google Scholar : PubMed/NCBI | |
Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, et al: Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 23:2176–2188. 2014. View Article : Google Scholar | |
Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Büschenfelde KH and Blessing M: TGF-beta1 in liver fibrosis: An inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol. 276:G1059–G1068. 1999. | |
Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, Zhao H, You Y, Xiao X and Zuo X: MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 32:514–522. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jia C, Xiong M, Wang P, Cui J, Du X, Yang Q, Wang W, Chen Y and Zhang T: Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS One. 9:e998492014. View Article : Google Scholar : PubMed/NCBI | |
Morishita Y, Imai T, Yoshizawa H, Watanabe M, Ishibashi K, Muto S and Nagata D: Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int J Nanomedicine. 10:3475–3488. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Lu CL, Cui LP, Hu YL, Yu Q, Jiang Y, Ma T, Jiao DK, Wang D and Jia CY: MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 304:195–202. 2012. View Article : Google Scholar | |
Zou Y, Cai Y, Lu D, Zhou Y, Yao Q and Zhang S: MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cell Signal. 39:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P, Zwerina J, Spriewald B, Pileckyte M, Schett G and Distler JH: Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 58:1475–1484. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Che P, Han X, Cai GQ, Liu G, Antony V, Luckhardt T, Siegal GP, Zhou Y, Liu RM, et al: Therapeutic targeting of SRC kinase in myofibroblast differentiation and pulmonary fibrosis. J Pharmacol Exp Ther. 351:87–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yuan BY, Chen YH, Wu ZF, Zhuang Y, Chen GW, Zhang L, Zhang HG, Cheng JC, Lin Q and Zeng ZC: MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling. Radiat Res. 192:621–629. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Li Y, Wang H, Li H, Liu S, Chen J and Ying H: miR-146a-5p acts as a negative regulator of TGF-β signaling in skeletal muscle after acute contusion. Acta Biochim Biophys Sin (Shanghai). 49:628–634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Ma C, Li HY, Chen L, Yuan SS and Li KJ: MicroRNA-146a downregulates the production of hyaluronic acid and collagen I in Graves' ophthalmopathy orbital fibroblasts. Exp Ther Med. 20:382020. View Article : Google Scholar : PubMed/NCBI | |
Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, Barre P, Rabaté C, Lebreton X, Gallazzini M, et al: MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc Nephrol. 28:479–493. 2017. View Article : Google Scholar : | |
Xiao Y, Qiao W, Wang X, Sun L and Ren W: MiR-146a mediates TLR-4 signaling pathway to affect myocardial fibrosis in rat constrictive pericarditis model. J Thorac Dis. 13:935–945. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura A, Wakabayashi Y and Mori T: Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem. 147:781–792. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sisto M, Lorusso L, Ingravallo G, Tamma R, Ribatti D and Lisi S: The TGF-β1 signaling pathway as an attractive target in the fibrosis pathogenesis of Sjögren's syndrome. Mediators Inflamm. 2018:19659352018. View Article : Google Scholar | |
Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
He Y, Huang C, Sun X, Long XR, Lv XW and Li J: MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal. 24:1923–1930. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wrighton KH, Lin X and Feng XH: Phospho-control of TGF-beta superfamily signaling. Cell Res. 19:8–20. 2009. View Article : Google Scholar | |
Hill CS: Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol. 8:a0220792016. View Article : Google Scholar : PubMed/NCBI | |
Kaufhold S and Bonavida B: Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J Exp Clin Cancer Res. 33:622014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Cai R, Tang G, Zhang W and Pang W: MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intra-muscular preadipocytes. J Anim Sci Biotechnol. 12:122021. View Article : Google Scholar | |
Milano G, Biemmi V, Lazzarini E, Balbi C, Ciullo A, Bolis S, Ameri P, Di Silvestre D, Mauri P, Barile L and Vassalli G: Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 116:383–392. 2020. | |
Sisto M, Ribatti D and Lisi S: Organ fibrosis and autoimmunity: The role of inflammation in TGFβ-dependent EMT. Biomolecules. 11:3102021. View Article : Google Scholar | |
Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J and Niehrs C: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 401:480–485. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y and Chen YG: Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem. 284:30097–30104. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F and Wang H: Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 11:361–378. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Chen X, Yang L, Kisseleva T, Brenner DA and Seki E: Transcriptional repression of the transforming growth factor β (TGF-β) pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by nuclear factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem. 289:7082–7091. 2014. View Article : Google Scholar : PubMed/NCBI | |
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wiest R, Lawson M and Geuking M: Pathological bacterial translocation in liver cirrhosis. J Hepatol. 60:197–209. 2014. View Article : Google Scholar | |
Pradere JP, Troeger JS, Dapito DH, Mencin AA and Schwabe RF: Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis. 30:232–244. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akira S and Takeda K: Toll-like receptor signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maubach G, Lim MCC, Chen J, Yang H and Zhuo L: miRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol. 17:2748–2773. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zeng Z, Shen X, Wu Z, Dong Y and Cheng JC: MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of Toll-like receptor 4 signaling pathways. Int J Mol Sci. 17:10762016. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Gu Y, Ren G, Chen L, Liu L, Wang X and Gao L: miRNA-146a mimic inhibits NOX4/P38 signalling to ameliorate mouse myocardial ischaemia reperfusion (I/R) injury. Oxid Med Cell Longev. 2021:63662542021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Jiang ZZ, Li YY, Tang WT, Yin J and Long XP: LncRNA CHRF promotes TGF-β1 induced EMT in alveolar epithelial cells by inhibiting miR-146a up-regulating L1CAM expression. Exp Lung Res. 47:198–209. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng B, Chen S, Gordon AD and Chakrabarti S: miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 105:70–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H and Zeng Z: Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol. 235:8270–8282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du J, Niu X, Wang Y, Kong L, Wang R, Zhang Y, Zhao S and Nan Y: MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep. 5:161632015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wen H and Huang Y: MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp Ther Med. 24:5062022. View Article : Google Scholar : PubMed/NCBI | |
Editorial Office: Erratum to MiR-146a mediates TLR-4 signaling pathway to affect myocardial fibrosis in rat constrictive pericarditis model. J Thorac Dis. 13:4623–4624. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC and Ren YX: Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater. 19:139–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Saferding V, Puchner A, Goncalves-Alves E, Hofmann M, Bonelli M, Brunner JS, Sahin E, Niederreiter B, Hayer S, Kiener HP, et al: MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun. 82:74–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jang SY, Park SJ, Chae MK, Lee JH, Lee EJ and Yoon JS: Role of microRNA-146a in regulation of fibrosis in orbital fibroblasts from patients with Graves' orbitopathy. Br J Ophthalmol. 102:407–414. 2018. View Article : Google Scholar | |
Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK and Puré E: Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci. 121:1393–1402. 2008. View Article : Google Scholar : PubMed/NCBI | |
Clark RA, McCoy GA, Folkvord JM and McPherson JM: TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: A fibronectin matrix-dependent event. J Cell Physiol. 170:69–80. 1997. View Article : Google Scholar : PubMed/NCBI | |
Saha B, Kodys K and Szabo G: Hepatitis C virus-induced monocyte differentiation into polarized M2 macrophages promotes stellate cell activation via TGF-β. Cell Mol Gastroenterol Hepatol. 2:302–316.e8. 2016. View Article : Google Scholar | |
Tang PM, Zhou S, Li CJ, Liao J, Xiao J, Wang QM, Lian GY, Li J, Huang XR, To KF, et al: The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int. 93:173–187. 2018. View Article : Google Scholar | |
Long H, Wang X, Chen Y, Wang L, Zhao M and Lu Q: Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 428:90–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shumnalieva R, Kachakova D, Shoumnalieva-Ivanova V, Miteva P, Kaneva R and Monov S: Whole peripheral blood miR-146a and miR-155 expression levels in systemic lupus erythematosus patients. Acta Reumatol Port. 43:217–225. 2018.PubMed/NCBI | |
Zhu Y, Xue Z and Di L: Regulation of MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med Sci Monit. 23:2550–2557. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abou-Zeid A, Saad M and Soliman E: MicroRNA 146a expression in rheumatoid arthritis: Association with tumor necrosis factor-alpha and disease activity. Genet Test Mol Biomarkers. 15:807–812. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang J, Yu W, Dong K, You F, Si B, Tang B, Zhang Y, Wang T and Qiao B: MicroRNA-146a inhibits the inflammatory responses induced by interleukin-17A during the infection of Helicobacter pylori. Mol Med Rep. 19:1388–1395. 2019. | |
Li LJ, Gu YJ, Wang LQ, Wan W, Wang HW, Yang XN, Ma LL, Yang LH and Meng ZH: Serum exosomal microRNA-146a as a novel diagnostic biomarker for acute coronary syndrome. J Thorac Dis. 13:3105–3114. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J, Sun Z and Shen WF: MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 585:854–860. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Xuan Y, Ge Y, Mu S, Hu C and Fan R: Plasma miR-146a and miR-365 expression and inflammatory factors in patients with osteoarthritis. Malays J Pathol. 43:311–317. 2021.PubMed/NCBI | |
Ghotloo S, Motedayyen H, Amani D, Saffari M and Sattari M: Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity. J Periodontal Res. 54:27–32. 2019. View Article : Google Scholar | |
Sabbatinelli J, Giuliani A, Matacchione G, Latini S, Laprovitera N, Pomponio G, Ferrarini A, Svegliati Baroni S, Pavani M, Moretti M, et al: Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech Ageing Dev. 193:1114132021. View Article : Google Scholar | |
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU and McManus DP: Serum exosomal miRNAs for grading hepatic fibrosis due to schistosomiasis. Int J Mol Sci. 21:35602020. View Article : Google Scholar : PubMed/NCBI | |
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU and McManus DP: Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine. 37:334–343. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Chen T, Zhou J, Zhao X, Sheng Q and Lv Z: MiR-146a-5p mimic inhibits NLRP3 inflammasome downstream inflammatory factors and CLIC4 in neonatal necrotizing enterocolitis. Front Cell Dev Biol. 8:5941432021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang S and Benoit DSW: Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J Control Release. 287:58–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niemiec SM, Hilton SA, Wallbank A, Azeltine M, Louiselle AE, Elajaili H, Allawzi A, Xu J, Mattson C, Dewberry LC, et al: Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomedicine. 34:1023882021. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Yoo K, Xu W, Pan R, Han XX and Chen P: Characterization and evaluation of a peptide-based siRNA delivery system in vitro. Drug Deliv Transl Res. 7:507–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Sun B, Gao X, Liu S, Hao R and Han B: Chitosan hydrogel doped with PEG-PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis. Pharmaceutics. 12:9072020. View Article : Google Scholar : PubMed/NCBI | |
Chiabotto G, Ceccotti E, Tapparo M, Camussi G and Bruno S: Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front Cell Dev Biol. 9:7774622021. View Article : Google Scholar : PubMed/NCBI | |
Liang YC, Wu YP, Li XD, Chen SH, Ye XJ, Xue XY and Xu N: TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J Cell Physiol. 234:23243–23255. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, Kasaiyan M, Basiri M and Tavoosidana G: Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res. 390:71–92. 2022. View Article : Google Scholar : PubMed/NCBI | |
Carreras-Badosa G, Maslovskaja J, Periyasamy K, Urgard E, Padari K, Vaher H, Tserel L, Gestin M, Kisand K, Arukuusk P, et al: NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials. 262:1203162020. View Article : Google Scholar : PubMed/NCBI | |
Wang WX, Prajapati P, Vekaria HJ, Spry M, Cloud AL, Sullivan PG and Springer JE: Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen Res. 16:514–522. 2021. View Article : Google Scholar : | |
Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, et al: Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun. 12:2892021. View Article : Google Scholar : PubMed/NCBI | |
Fouad MR, Salama RM, Zaki HF and El-Sahar AE: Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int Immunopharmacol. 92:1073542021. View Article : Google Scholar | |
Pan Y, Wang J, Xue Y, Zhao J, Li D, Zhang S, Li K, Hou Y and Fan H: GSKJ4 protects mice against early sepsis via reducing proinflammatory factors and up-regulating MiR-146a. Front Immunol. 9:22722018. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Ma M and Yu H and Yu H: Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Nav 1.7. J Cell Biochem. 119:9888–9898. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Zhu Y, Gao G and Zhang Y: Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sci. 228:189–197. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai L, Zhang G, Cheng Z, Wang X, Jia L, Jing X, Wang H, Zhang R, Liu M, Jiang T, et al: Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury. Connect Tissue Res. 59:581–592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu D, Hu B, Zhou Y, Sun X, Chen J, Chen L, Ji Z, Zhu J and Duan Y: microRNA-146a is involved in rSjP40-inhibited activation of LX-2 cells by targeting Smad4 expression. J Cell Biochem. 119:9249–9253. 2018. View Article : Google Scholar : PubMed/NCBI | |
Madhavan D, Cuk K, Burwinkel B and Yang R: Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet. 4:1162013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang S, Zhang C and Wang M: LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol Cell Biochem. 466:17–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stenvang J, Petri A, Lindow M, Obad S and Kauppinen S: Inhibition of microRNA function by antimiR oligonucleotides. Silence. 3:12012. View Article : Google Scholar : PubMed/NCBI |