Function and characteristics of TIM‑4 in immune regulation and disease (Review)
- Authors:
- Ziyao Wang
- Chen Chen
- Yingzhen Su
- Nengwen Ke
-
Affiliations: Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Radiology, The First People's Hospital of Chengdu, Chengdu, Sichuan 610095, P.R. China, Kunming University School of Medicine, Kunming University School, Kunming, Yunnan 650124, P.R. China - Published online on: December 12, 2022 https://doi.org/10.3892/ijmm.2022.5213
- Article Number: 10
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT and DeKruyff RH: Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol. 2:1109–1116. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Phong B, Egloff AM and Kane LP: TIM polymorphisms-genetics and function. Genes Immun. 12:595–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Santiago C, Ballesteros A, Tami C, Martínez-Muñoz L, Kaplan GG and Casasnovas JM: Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity. 26:299–310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK and Umetsu DT: The costimulatory role of TIM molecules. Immunol Rev. 229:259–270. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kuchroo VK, Umetsu DT, DeKruyff RH and Freeman GJ: The TIM gene family: Emerging roles in immunity and disease. Nat Rev Immunol. 3:454–462. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kuchroo VK, Dardalhon V, Xiao S and Anderson AC: New roles for TIM family members in immune regulation. Nat Rev Immunol. 8:577–580. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shakhov AN, Rybtsov S, Tumanov AV, Shulenin S, Dean M, Kuprash DV and Nedospasov SA: SMUCKLER/TIM4 is a distinct member of TIM family expressed by stromal cells of secondary lymphoid tissues and associated with lymphotoxin signaling. Eur J Immunol. 34:494–503. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fang XY, Xu WD, Pan HF, Leng RX and Ye DQ: Novel insights into Tim-4 function in autoimmune diseases. Autoimmunity. 48:189–195. 2015. View Article : Google Scholar | |
Liu W, Xu L, Liang X, Liu X, Zhao Y, Ma C and Gao L: Tim-4 in health and disease: Friend or Foe. Front Immunol. 11:5372020. View Article : Google Scholar | |
Park D, Hochreiter-Hufford A and Ravichandran KS: The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol. 19:346–351. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yeung MY, McGrath M and Najafian N: The emerging role of the TIM molecules in transplantation. Am J Transplant. 11:2012–2019. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE, Kenny J, Zheng XX, Umetsu DT, DeKruyff RH, et al: TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol. 6:455–464. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong K, Valdez PA, Tan C, Yeh S, Hongo JA and Ouyang W: Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA. 107:8712–8717. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi N, Karisola P, Peña-Cruz V, Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I, Zhu B, et al: TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 27:927–940. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Gu J, Zhou L and Mi QS: TIM-4 is expressed on invariant NKT cells but dispensable for their development and function. Oncotarget. 7:71099–71111. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Mo L, Hao H, Yang W, Zhou Q, Xue F, Shi Z, Liu Z, Yang PC and Feng B: Flagellin modulates TIM4 expression in mast cells. Cell Biol Int. 38:1330–1336. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yano H, Motoshima T, Ma C, Pan C, Yamada S, Nakayama T, Kitada S, Fujimoto N, Kamba T, Takeya M and Komohara Y: The significance of TIMD4 expression in clear cell renal cell carcinoma. Med Mol Morphol. 50:220–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif. 53:e127762020. View Article : Google Scholar | |
Tan X, Zhang Z, Yao H and Shen L: Tim-4 promotes the growth of colorectal cancer by activating angiogenesis and recruiting tumor-associated macrophages via the PI3K/AKT/mTOR signaling pathway. Cancer Lett. 436:119–128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Li X, Xu S, Ma X and Zhang Q: Expression of Tim4 in glioma and its regulatory role in LN-18 Glioma cells. Med Sci Monit. 22:77–82. 2016. View Article : Google Scholar : PubMed/NCBI | |
Savill J and Gregory C: Apoptotic PS to phagocyte TIM-4: Eat me. Immunity. 27:830–832. 2007. View Article : Google Scholar : PubMed/NCBI | |
Feng BS, Chen X, He SH, Zheng PY, Foster J, Xing Z, Bienenstock J and Yang PC: Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J Allergy Clin Immunol. 122:55–61. 61.e1–7. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baghdadi M, Yoneda A, Yamashina T, Nagao H, Komohara Y, Nagai S, Akiba H, Foretz M, Yoshiyama H, Kinoshita I, et al: TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity. 39:1070–1081. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Luo Y, Liu Z, Yang P and Gui Y: Probiotics SOD inhibited food allergy via downregulation of STAT6-TIM4 signaling on DCs. Mol Immunol. 103:71–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kerr D, Tietjen GT, Gong Z, Tajkhorshid E, Adams EJ and Lee K: Sensitivity of peripheral membrane proteins to the membrane context: A case study of phosphatidylserine and the TIM proteins. Biochim Biophys Acta Biomembr. 1860:2126–2133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park B, Lee J, Moon H, Lee G, Lee DH, Cho JH and Park D: Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells. Cell Death Dis. 6:e17722015. View Article : Google Scholar : PubMed/NCBI | |
Savill J and Fadok V: Corpse clearance defines the meaning of cell death. Nature. 407:784–788. 2000. View Article : Google Scholar : PubMed/NCBI | |
Morioka S, Maueröder C and Ravichandran KS: Living on the Edge: Efferocytosis at the interface of homeostasis and pathology. Immunity. 50:1149–1162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T and Nagata S: Identification of Tim4 as a phosphatidylserine receptor. Nature. 450:435–439. 2007. View Article : Google Scholar : PubMed/NCBI | |
Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL and Gregory CD: Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature. 392:505–509. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nishi C, Toda S, Segawa K and Nagata S: Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol Cell Biol. 34:1512–1520. 2014. View Article : Google Scholar : PubMed/NCBI | |
Toda S, Hanayama R and Nagata S: Two-step engulfment of apoptotic cells. Mol Cell Biol. 32:118–125. 2012. View Article : Google Scholar : | |
Yanagihashi Y, Segawa K, Maeda R, Nabeshima YI and Nagata S: Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proc Natl Acad Sci USA. 114:8800–8805. 2017. View Article : Google Scholar : PubMed/NCBI | |
Freeman GJ, Casasnovas JM, Umetsu DT and DeKruyff RH: TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev. 235:172–189. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Park B, Moon B, Park J, Moon H, Kim K, Lee SA, Kim D, Min C, Lee DH, et al: A scaffold for signaling of Tim-4-mediated efferocytosis is formed by fibronectin. Cell Death Differ. 26:1646–1655. 2019. View Article : Google Scholar : | |
Flannagan RS, Canton J, Furuya W, Glogauer M and Grinstein S: The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol Biol Cell. 25:1511–1522. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pankov R and Yamada KM: Fibronectin at a glance. J Cell Sci. 115(Pt 20): 3861–3863. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wierzbicka-Patynowski I and Schwarzbauer JE: The ins and outs of fibronectin matrix assembly. J Cell Sci. 116(Pt 16): 3269–3276. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moon B, Lee J, Lee SA, Min C, Moon H, Kim D, Yang S, Moon H, Jeon J, Joo YE and Park D: Mertk Interacts with Tim-4 to Enhance Tim-4-Mediated Efferocytosis. Cells. 9:16252020. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA and Henson PM: Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol. 155:649–659. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mazaheri F, Breus O, Durdu S, Haas P, Wittbrodt J, Gilmour D and Peri F: Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun. 5:40462014. View Article : Google Scholar : PubMed/NCBI | |
Shim JA, Lee ES, Choi B and Sohn S: The role of T cell immunoglobulin mucin domains 1 and 4 in a herpes simplex virus-induced Behçet's disease mouse model. Mediators Inflamm. 2013:9039482013. View Article : Google Scholar | |
Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, Bu X, Farzan M, Freeman GJ, Umetsu DT, et al: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9:e10032322013. View Article : Google Scholar : PubMed/NCBI | |
Czuczman MA, Fattouh R, van Rijn JM, Canadien V, Osborne S, Muise AM, Kuchroo VK, Higgins DE and Brumell JH: Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature. 509:230–234. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirose M, Ueno T, Nagumo H, Sato Y and Sakai-Kato K: Enhancing the endocytosis of phosphatidylserine-containing liposomes through Tim4 by modulation of membrane fluidity. Mol Pharm. 19:91–99. 2022. View Article : Google Scholar | |
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 38:792–804. 2013. View Article : Google Scholar : PubMed/NCBI | |
Albacker LA, Yu S, Bedoret D, Lee WL, Umetsu SE, Monahan S, Freeman GJ, Umetsu DT and DeKruyff RH: TIM-4, expressed by medullary macrophages, regulates respiratory tolerance by mediating phagocytosis of antigen-specific T cells. Mucosal Immunol. 6:580–590. 2013. View Article : Google Scholar | |
del Rio ML, Rodriguez-Barbosa JI, Kremmer E and Förster R: CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J Immunol. 178:6861–6866. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsitoura DC, DeKruyff RH, Lamb JR and Umetsu DT: Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. J Immunol. 163:2592–2600. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fischer K, Voelkl S, Berger J, Andreesen R, Pomorski T and Mackensen A: Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood. 108:4094–4101. 2006. View Article : Google Scholar : PubMed/NCBI | |
Elliott JI, Surprenant A, Marelli-Berg FM, Cooper JC, Cassady-Cain RL, Wooding C, Linton K, Alexander DR and Higgins CF: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol. 7:808–816. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hilligan KL, Connor LM, Schmidt AJ and Ronchese F: Activation-Induced TIM-4 expression identifies differential responsiveness of intestinal CD103+ CD11b+ dendritic cells to a mucosal adjuvant. PLoS One. 11:e01587752016. View Article : Google Scholar : PubMed/NCBI | |
Ge RT, Zeng L, Mo LH, Xu LZ, Zhang HP, Yu HQ, Zhang M, Liu ZG, Liu ZJ and Yang PC: Interaction of TIM4 and TIM3 induces T helper 1 cell apoptosis. Immunol Res. 64:470–475. 2016. View Article : Google Scholar | |
Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O'Garra A and Liu YJ: The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med. 195:953–958. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Manzanet R, Meyers JH, Balasubramanian S, Slavik J, Kassam N, Dardalhon V, Greenfield EA, Anderson AC, Sobel RA, Hafler DA, et al: TIM-4 expressed on APCs induces T cell expansion and survival. J Immunol. 180:4706–4713. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mizui M, Shikina T, Arase H, Suzuki K, Yasui T, Rennert PD, Kumanogoh A and Kikutani H: Bimodal regulation of T cell-mediated immune responses by TIM-4. Int Immunol. 20:695–708. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S, Malissen B, Osborne LC, Artis D and Mowat AM: Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol. 15:929–937. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thornley TB, Fang Z, Balasubramanian S, Larocca RA, Gong W, Gupta S, Csizmadia E, Degauque N, Kim BS, Koulmanda M, et al: Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Invest. 124:3443–3454. 2014. View Article : Google Scholar : PubMed/NCBI | |
Osorio JC, Arbour KC, Le DT, Durham JN, Plodkowski AJ, Halpenny DF, Ginsberg MS, Sawan P, Crompton JG, Yu HA, et al: Lesion-Level Response dynamics to programmed cell death protein (PD-1) Blockade. J Clin Oncol. 37:3546–3555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ouimet M, Barrett TJ and Fisher EA: HDL and reverse cholesterol transport. Circ Res. 124:1505–1518. 2019. View Article : Google Scholar : PubMed/NCBI | |
Magalhaes MS, Smith P, Portman JR, Jackson-Jones LH, Bain CC, Ramachandran P, Michailidou Z, Stimson RH, Dweck MR, Denby L, et al: Role of Tim4 in the regulation of ABCA1(+) adipose tissue macrophages and post-prandial cholesterol levels. Nat Commun. 12:44342021. View Article : Google Scholar : PubMed/NCBI | |
Yeung MY, McGrath MM, Nakayama M, Shimizu T, Boenisch O, Magee CN, Abdoli R, Akiba H, Ueno T, Turka LA and Najafian N: Interruption of dendritic cell-mediated TIM-4 signaling induces regulatory T cells and promotes skin allograft survival. J Immunol. 191:4447–4455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bouwens L, Baekeland M, De Zanger R and Wisse E: Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology. 6:718–722. 1986. View Article : Google Scholar : PubMed/NCBI | |
Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI and Hahn YS: Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem. 287:40161–40172. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qin D, Liu P, Zhou H, Jin J, Gong W, Liu K, Chen S, Huang J, Fan W, Tao Z and Xu Y: TIM-4 in macrophages contributes to nasal polyp formation through the TGF-β1-mediated epithelial to mesenchymal transition in nasal epithelial cells. Front Immunol. 13:9416082022. View Article : Google Scholar | |
Xu L, Zhao P, Xu Y and Gao L, Wang H, Jia X, Ma H, Liang X, Ma C and Gao L: Tim-4 protects mice against lipopolysaccharide-induced endotoxic shock by suppressing the NF-κB signaling pathway. Lab Invest. 96:1189–1197. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Tan K, Bu L, Bo L, Ni W, Fei M, Chen F, Deng X and Li J: Tim4 regulates NALP3 inflammasome expression and activity during monocyte/macrophage dysfunction in septic shock patients. Burns. 46:652–662. 2020. View Article : Google Scholar | |
Rossaint J and Zarbock A: Pathogenesis of multiple organ failure in sepsis. Crit Rev Immunol. 35:277–291. 2015. View Article : Google Scholar | |
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D, Krupnick AS, et al: Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 306:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu T, He SH, Zheng PY, Zhang TY, Wang BQ and Yang PC: Staphylococcal enterotoxin B increases TIM4 expression in human dendritic cells that drives naïve CD4 T cells to differentiate into Th2 cells. Mol Immunol. 44:3580–3587. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L and Yeh C: TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology. 133:1522–1533. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jiang R, Jiang Y, Xia P, Luo G, Huang W, Hu Z, Cheng G, Xiong Y, Wang Y and Cui T: Cigarette Smoke Extract Promotes TIM4 Expression in Murine Dendritic Cells Leading to Th2 Polarization through ERK-Dependent Pathways. Int Arch Allergy Immunol. 178:219–228. 2019. View Article : Google Scholar | |
Caronni N, Piperno GM, Simoncello F, Romano O, Vodret S, Yanagihashi Y, Dress R, Dutertre CA, Bugatti M, Bourdeley P, et al: TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nat Commun. 12:22372021. View Article : Google Scholar : PubMed/NCBI | |
Feng BS, Zheng PY, Chen X, Liao XQ and Yang PC: Investigation of the role of cholera toxin in assisting the initiation of the antigen-specific Th2 response. Immunol Invest. 37:782–797. 2008. View Article : Google Scholar : PubMed/NCBI | |
Siracusa MC, Kim BS, Spergel JM and Artis D: Basophils and allergic inflammation. J Allergy Clin Immunol. 132:789–801; quiz 788. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ding Q, Mohib K, Kuchroo VK and Rothstein DM: TIM-4 Identifies IFN-γ-expressing proinflammatory B Effector 1 cells that promote tumor and allograft rejection. J Immunol. 199:2585–2595. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang H, Wu X, Liu B, Liu W, Wang R, Liang X, Ma C and Gao L: TIM-4 promotes the growth of non-small-cell lung cancer in a RGD motif-dependent manner. Br J Cancer. 113:1484–1492. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao D, Guo G, Wu Y and Chen Y: Expression and anatomical distribution of TIM-containing molecules in Langerhans cell sarcoma. J Mol Histol. 44:213–220. 2013. View Article : Google Scholar | |
Xu L, Xiao H, Xu M, Zhou C, Yi L and Liang H: Glioma-derived T cell immunoglobulin- and mucin domain-containing molecule-4 (TIM4) contributes to tumor tolerance. J Biol Chem. 286:36694–36699. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ramaekers F, Broers J, Rot MK, Oostendorp T, Wagenaar S and Vooijs P: Detection of epithelial- and neural type of intermediate filament proteins in human lung tumors. Acta Histochem Suppl. 34:45–56. 1987.PubMed/NCBI | |
Zhao P, Xu L, Wang P, Liang X, Qi J, Liu P, Guo C, Zhang L, Ma C and Gao L: Increased expression of human T-cell immunoglobulin- and mucin-domain-containing molecule-4 in peripheral blood mononuclear cells from patients with system lupus erythematosus. Cell Mol Immunol. 7:152–156. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang PY, Yang ZW, Ma F and Li FX: TIMD4 exhibits regulatory capability on the proliferation and apoptosis of diffuse large B-cell lymphoma cells via the Wnt/β-catenin pathway. J Gene Med. 22:e31862020. View Article : Google Scholar | |
Li Z, Wang H, Dong R, Man J, Sun L, Qian X, Zhu X, Cao P, Yu Y, Le J, et al: Single-Cell RNA-seq reveals characteristics of malignant cells and immune microenvironment in subcutaneous panniculitis-like T-Cell lymphoma. Front Oncol. 11:6115802021. View Article : Google Scholar : PubMed/NCBI | |
Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H and Bultynck G: A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim Biophys Acta. 1843:2240–2252. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gajate C and Mollinedo F: Lipid rafts, endoplasmic reticulum and mitochondria in the antitumor action of the alkylphospholipid analog edelfosine. Anticancer Agents Med Chem. 14:509–527. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koehler BC, Jäger D and Schulze-Bergkamen H: Targeting cell death signaling in colorectal cancer: Current strategies and future perspectives. World J Gastroenterol. 20:1923–1934. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Wang Y, Liu W, Liang Y, Wang Y, Wu Z, Xu L, Liang X, Ma C and Gao L: N-Glycosylation at Asn291 Stabilizes TIM-4 and Promotes the Metastasis of NSCLC. Front Oncol. 12:7305302022. View Article : Google Scholar : PubMed/NCBI | |
Ruoslahti E: RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 12:697–715. 1996. View Article : Google Scholar : PubMed/NCBI | |
Danhier F, Le Breton A and Préat V: RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 9:2961–2973. 2012. View Article : Google Scholar : PubMed/NCBI | |
Baghdadi M, Nagao H, Yoshiyama H, Akiba H, Yagita H, Dosaka-Akita H and Jinushi M: Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol Immunother. 62:629–637. 2013. View Article : Google Scholar | |
Martines RB, Ng DL, Greer PW, Rollin PE and Zaki SR: Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol. 235:153–174. 2015. View Article : Google Scholar | |
Amara A and Mercer J: Viral apoptotic mimicry. Nat Rev Microbiol. 13:461–469. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dragovich MA, Fortoul N, Jagota A, Zhang W, Schutt K, Xu Y, Sanabria M, Moyer DM Jr, Moller-Tank S, Maury W and Zhang XF: Biomechanical characterization of TIM protein-mediated Ebola virus-host cell adhesion. Sci Rep. 9:2672019. View Article : Google Scholar : PubMed/NCBI | |
MacPherson JI, Dickerson JE, Pinney JW and Robertson DL: Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS Comput Biol. 6:e10008632010. View Article : Google Scholar : PubMed/NCBI | |
Franzosa EA and Xia Y: Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci USA. 108:10538–10543. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chan EY, Korth MJ and Katze MG: Decoding the multifaceted HIV-1 virus-host interactome. J Biol. 8:842009. View Article : Google Scholar : PubMed/NCBI | |
Sarmady M, Dampier W and Tozeren A: HIV protein sequence hotspots for crosstalk with host hub proteins. PLoS One. 6:e232932011. View Article : Google Scholar : PubMed/NCBI | |
Aloia RC, Tian H and Jensen FC: Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA. 90:5181–5185. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sims B, Farrow AL, Williams SD, Bansal A, Krendelchtchikov A, Gu L and Matthews QL: Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells. Int J Nanomedicine. 12:4823–4833. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kassu A, Marcus RA, D'Souza MB, Kelly-McKnight EA and Palmer BE: Suppression of HIV replication by antiretroviral therapy reduces TIM-3 expression on HIV-specific CD8(+) T cells. AIDS Res Hum Retroviruses. 27:1–3. 2011. View Article : Google Scholar | |
Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L and Hibi T: Ulcerative colitis. Nat Rev Dis Primers. 6:742020. View Article : Google Scholar : PubMed/NCBI | |
Xue G, Hua L, Liu D, Zhong M, Chen Y, Zhou B, Xie Y and Li J: Tim-4 expressing monocytes as a novel indicator to assess disease activity and severity of ulcerative colitis. Life Sci. 269:1190772021. View Article : Google Scholar : PubMed/NCBI | |
Chen D, He J, Lu C, Zhou J, Fang K, Liu X and Xu L: Increased expression of T cell immunoglobulin and mucin domain 4 is positively associated with the disease severity of patients with ankylosing spondylitis. Inflammation. 38:935–940. 2015. View Article : Google Scholar | |
Qiu S, Du Y, Duan X, Geng X, Xie J, Gao H and Yang PC: B cell immunity in allergic nasal mucosa induces T helper 2 cell differentiation. J Clin Immunol. 32:886–895. 2012. View Article : Google Scholar : PubMed/NCBI | |
Finckh A, Gilbert B, Hodkinson B, Bae SC, Thomas R, Deane KD, Alpizar-Rodriguez D and Lauper K: Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol. 18:591–602. 2022.PubMed/NCBI | |
Abe Y, Kamachi F, Kawamoto T, Makino F, Ito J, Kojima Y, Moustapha Ael D, Usui Y, Yagita H, Takasaki Y, et al: TIM-4 has dual function in the induction and effector phases of murine arthritis. J Immunol. 191:4562–4572. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dambach DM, Watson LM, Gray KR, Durham SK and Laskin DL: Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology. 35:1093–1103. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baeck C, Wei X, Bartneck M, Fech V, Heymann F, Gassler N, Hittatiya K, Eulberg D, Luedde T, Trautwein C and Tacke F: Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology. 59:1060–1072. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhao X, Liu X and Liu H: Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol Immunol. 66:117–125. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ji H, Liu Y, Zhang Y, Shen XD, Gao F, Busuttil RW, Kuchroo VK and Kupiec-Weglinski JW: T-cell immunoglobulin and mucin domain 4 (TIM-4) signaling in innate immune-mediated liver ischemia-reperfusion injury. Hepatology. 60:2052–2064. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S, Raes G, et al: Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 7:103212016. View Article : Google Scholar : PubMed/NCBI | |
Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS and Meisel A: Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ Res. 130:1167–1186. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shen Q, Liu Y, Chen H, Zheng X, Xie S, Ji H and Zheng S: Hepatic ischemic preconditioning alleviates ischemia-reperfusion injury by decreasing TIM4 Expression. Int J Biol Sci. 14:1186–1195. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lambertsen KL, Biber K and Finsen B: Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab. 32:1677–1698. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang H, Yuan C, Gu X, Chen Q, Huang D, Li H and Sun M: Association between TIM-3 polymorphisms and cancer risk: A meta-analysis. Ann Transl Med. 7:5502019. View Article : Google Scholar | |
Ye Z, Jin Y, Li H, Xu H, He Y and Chen Y: Association of Tim-4 expression in monocyte subtypes with clinical course and prognosis in acute ischemic stroke patients. Int J Neurosci. 130:906–916. 2020. View Article : Google Scholar | |
Zheng L, Huang Y, Wang X, Wang X, Chen W, Cheng W and Pan C: Inhibition of TIM-4 protects against cerebral ischaemia-reperfusion injury. J Cell Mol Med. 24:1276–1285. 2020. View Article : Google Scholar | |
Hansson GK, Robertson AK and Söderberg-Nauclér C: Inflammation and atherosclerosis. Annu Rev Pathol. 1:297–329. 2006. View Article : Google Scholar | |
Liu Y, Chen H, Chen Z, Qiu J, Pang H and Zhou Z: Novel roles of the tim family in immune regulation and autoimmune diseases. Front Immunol. 12:7487872021. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Lee SA, Moon H, Kim K and Park D: The Tim gene family in efferocytosis. Genes Genomics. 42:979–986. 2020. View Article : Google Scholar : PubMed/NCBI | |
McGrath MM: Diverse roles of TIM4 in immune activation: Implications for alloimmunity. Curr Opin Organ Transplant. 23:44–50. 2018. View Article : Google Scholar | |
Evans JP and Liu SL: Multifaceted Roles of TIM-Family proteins in virus-host interactions. Trends Microbiol. 28:224–235. 2020. View Article : Google Scholar : |