1
|
Zajączkowska R, Kocot-Kępska M, Leppert W
and Wordliczek J: Bone pain in cancer patients: Mechanisms and
current treatment. Int J Mol Sci. 20:60472019. View Article : Google Scholar
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mercadante S: Malignant bone pain:
Pathophysiology and treatment. Pain. 69:1–18. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gallaway MS, Townsend JS, Shelby D and
Puckett MC: Pain among cancer survivors. Prev Chronic Dis.
17:E542020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kane CM, Hoskin P and Bennett MI: Cancer
induced bone pain. BMJ. 350:h3152015. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Kapoor R, Saxena AK, Vasudev P, Sundriyal
D and Kumar A: Cancer induced bone pain: Current management and
future perspectives. Med Oncol. 38:1342021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vergne-Salle P and Bertin P: Chronic pain
and neuroinflammation. Joint Bone Spine. 88:1052222021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ji RR, Xu ZZ and Gao YJ: Emerging targets
in neuroinflammation-driven chronic pain. Nat Rev Drug Discov.
13:533–548. 2014. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang S, Li Y and Tu Y: Lidocaine
attenuates CFA-induced inflammatory pain in rats by regulating the
MAPK/ERK/NF-κB signaling pathway. Exp Ther Med. 21:2112021.
View Article : Google Scholar
|
10
|
Sommer C, Leinders M and Üçeyler N:
Inflammation in the pathophysiology of neuropathic pain. Pain.
159:595–602. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wahlman C, Doyle TM, Little JW, Luongo L,
Janes K, Chen Z, Esposito E, Tosh DK, Cuzzocrea S, Jacobson KA and
Salvemini D: Chemotherapy-induced pain is promoted by enhanced
spinal adenosine kinase levels through astrocyte-dependent
mechanisms. Pain. 159:1025–1034. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zheng XQ, Wu YH, Huang JF and Wu AM:
Neurophysiological mechanisms of cancer-induced bone pain. J Adv
Res. 35:117–127. 2021. View Article : Google Scholar
|
13
|
Li MY, Ding JQ, Tang Q, Hao MM, Wang BH,
Wu J, Yu LZ, Jiao M, Luo BH, Xie M and Zhu HL: SIRT1 activation by
SRT1720 attenuates bone cancer pain via preventing Drp1-mediated
mitochondrial fission. Biochim Biophys Acta Mol Basis Dis.
1865:587–598. 2019. View Article : Google Scholar
|
14
|
Albrecht DS, Ahmed SU, Kettner NW, Borra
RJH, Cohen-Adad J, Deng H, Houle TT, Opalacz A, Roth SA, Melo MFV,
et al: Neuroinflammation of the spinal cord and nerve roots in
chronic radicular pain patients. Pain. 159:968–977. 2018.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Del VL, Schwartzman RJ and Alexander G:
Spinal cord histopathological alterations in a patient with
longstanding complex regional pain syndrome. Brain Behav Immun.
23:85–91. 2009. View Article : Google Scholar
|
16
|
Shi Y, Gelman BB, Lisinicchia JG and Tang
SJ: Chronic-pain-associated astrocytic reaction in the spinal cord
dorsal horn of human immunodeficiency virus-infected patients. J
Neurosci. 32:10833–10840. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu B, Luo M, Meng D, Pan H, Shen H, Shen
J, Yao M and Xu L: Tetrahydropalmatine exerts analgesic effects by
promoting apoptosis and inhibiting the activation of glial cells in
rats with inflammatory pain. Mol Pain. 17:174480692110421172021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Allison DJ, Thomas A, Beaudry K and Ditor
DS: Targeting inflammation as a treatment modality for neuropathic
pain in spinal cord injury: A randomized clinical trial. J
Neuroinflammation. 13:1522016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yu ML, Wei RD, Zhang T, Wang JM, Cheng Y,
Qin FF, Fu SP, Lu ZG and Lu SF: Electroacupuncture relieves pain
and attenuates inflammation progression through inducing IL-10
Production in CFA-Induced mice. Inflammation. 43:1233–1245. 2020.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Schwartz ES, Lee I, Chung K and Mo Chung
J: Oxidative stress in the spinal cord is an important contributor
in capsaicin-induced mechanical secondary hyperalgesia in mice.
Pain. 138:514–524. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kroth A, Santos MDCQ, Borella da Silva TC,
Santos Silveira EM and Partata WA: Aqueous leaf extract from Luehea
divaricata Mart. Modulates oxidative stress markers in the spinal
cord of rats with neuropathic pain. J Ethnopharmacol.
268:1136742021. View Article : Google Scholar
|
22
|
Long H, Zheng H, Ai L, Osman K and Liu Z:
Down-Regulation of NOX4 expression in dorsal horn of spinal cord
could alleviate cancer-induced bone pain in rats by reducing
oxidative stress response. Cancer Manag Res. 12:10929–10938. 2020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hussain T, Tan B, Yin Y, Blachier F,
Tossou MC and Rahu N: Oxidative stress and inflammation:What
polyphenols can do for us? Oxid Med Cell Longev. 2016:74327972016.
View Article : Google Scholar
|
24
|
Duarte A, Silveira GG, Soave DF, Costa JPO
and Silva AR: The Role of the LY294002-A non-selective inhibitor of
phosphatidylinositol 3-Kinase (PI3K) pathway-in cell survival and
proliferation in cell line SCC-25. Asian Pac J Cancer Prev.
20:3377–3383. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu Y, Qin X, Lu X and Jiang J: Effects of
inhibiting the PI3K/Akt/mTOR signaling pathway on the pain of
sciatic endometriosis in a rat model. Can J Physiol Pharmacol.
97:963–970. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu W, Lv Y and Ren F: PI3K/Akt pathway is
required for spinal central sensitization in neuropathic pain. Cell
Mol Neurobiol. 38:747–755. 2018. View Article : Google Scholar
|
27
|
Jiang B, Zhong X, Fang J, Zhang A, WangD
W, Liang Y, Fang J, Chen F and Du J: Electroacupuncture attenuates
morphine tolerance in rats with bone cancer pain by inhibiting
PI3K/Akt/JNK1/2 signaling pathway in the spinal dorsal horn. Integr
Cancer Ther. 20:15347354219952372021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mao Y, Wang C, Tian X, Huang Y, Zhang Y,
Wu H, Yang S, Xu K, Liu Y, Zhang W, et al: Endoplasmic reticulum
stress contributes to nociception via neuroinflammation in a murine
bone cancer pain model. Anesthesiology. 132:357–372. 2020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liao C, Xu D, Liu X, Fang Y, Yi J, Li X
and Guo B: Iridium (III) complex-loaded liposomes as a drug
delivery system for lung cancer through mitochondrial dysfunction.
Int J Nanomedicine. 13:4417–4431. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Donnelly CR, Andriessen AS, Chen G, Wang
K, Jiang C and Maixner W: Central nervous system targets: Glial
cell mechanisms in chronic pain. Neurotherapeutics. 17:846–860.
2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chatterjee P, Pedrini S, Stoops E, Goozee
K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi
HR, et al: Plasma glial fibrillary acidic protein is elevated in
cognitively normal older adults at risk of Alzheimer's disease.
Transl Psychiatry. 11:272021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tsuruta F, Masuyama N and Gotoh Y: The
phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax
translocation to mitochondria. J Biol Chem. 277:14040–14047. 2002.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Sindhi V and Erdek M: Interventional
treatments for metastatic bone cancer pain. Pain Manag. 9:307–315.
2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lawton AJ, Lee KA, Cheville AL, Ferrone
ML, Rades D, Balboni TA and Abrahm JL: Assessment and management of
patients with metastatic spinal cord compression: A
multidisciplinary review. J Clin Oncol. 37:61–71. 2019. View Article : Google Scholar
|
35
|
Laakso H, Lehto LJ, Paasonen J, Salo R,
Canna A, Lavrov I, Michaeli S, Gröhn O and Mangia S: Spinal cord
fMRI with MB-SWIFT for assessing epidural spinal cord stimulation
in rats. Magn Reson Med. 86:2137–2145. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Paolini F, Ferini G, Bonosi L, Costanzo R,
Brunasso L, Benigno UE, Porzio M, Gerardi RM, Giammalva GR, Umana
GE, et al: Spinal cord stimulationto treat unresponsive cancer
pain: A possible solution in palliative oncological therapy. Life
(Basel). 12:5542022.
|
37
|
Bosma RL, Mojarad EA, Leung L, Pukall C,
Staud R and Stroman PW: FMRI of spinal and supra-spinal correlates
of temporal pain summation in fibromyalgia patients. Hum Brain
Mapp. 37:1349–1360. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang R, Lao L, Ren K and Berman BM:
Mechanisms of acupuncture-electro acupuncture on persistent pain.
Anesthesiology. 120:482–503. 2014. View Article : Google Scholar
|
39
|
Ji RR, Donnelly CR and Nedergaard M:
Astrocytes in chronic pain and itch. Nat Rev Neurosci. 20:667–685.
2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang Y, Kuramitsu Y, Baron B, Kitagawa T,
Tokuda K, Akada J, Maehara SI, Maehara Y and Nakamura K: PI3K
inhibitor LY294002, as opposed to wortmannin, enhances AKT
phosphorylation in gemcitabine-resistant pancreatic cancer cells.
Int J Oncol. 50:606–612. 2017. View Article : Google Scholar
|
41
|
Jo H, Lo PK, Li Y, Loison F, Green S, Wang
J, Silberstein LE, Ye K, Chen H and Luo HR: Deactivationof Akt by a
small molecule inhibitor targeting pleckstrin homology domain and
facilitating Akt ubiquitination. Proc Natl Acad Sci USA.
108:6486–6491. 2011. View Article : Google Scholar
|
42
|
Yu W, Sun H, Zha W, Cui W, Xu L, Min Q and
Wu J: Apigenin attenuates adriamycin-induced cardiomyocyte
apoptosis via the PI3K/AKT/mTOR pathway. Evid Based Complement
Alternat Med. 2017:25906762017. View Article : Google Scholar
|
43
|
Sala V, Della Sala A, Ghigo A and Hirsch
E: Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in
respiratory diseases. Cell Stress. 5:40–51. 2021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Dagia NM, Agarwal G, Kamath DV,
Chetrapal-Kunwar A, Gupte RD, Jadhav MG, Dadarkar SS, Trivedi J,
Kulkarni-Almeida AA, Kharas F, et al: A preferential
p110alpha/gamma PI3K inhibitor attenuates experimental inflammation
by suppressing the production of proinflammatory mediators in a
NF-kappaB-dependent manner. Am J Physiol Cell Physiol.
298:C929–C941. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hellenbrand DJ, Quinn CM, Piper ZJ,
Morehouse CN, Fixel JA and Hanna AS: Inflammation after spinal cord
injury: A review of the critical timeline of signaling cues and
cellular infiltration. J Neuroinflammation. 18:2842021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wojdasiewicz P, Poniatowski ŁA and
Szukiewicz D: The role of inflammatory and anti-inflammatory
cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm.
2014:5614592014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Khutornenko AA, Dalina AA, Chernyak BV,
Chumakov PM and Evstafieva AG: The role of dihydroorotate
dehydrogenase in apoptosis induction in response to inhibition of
the mitochondrial respiratory chain complex III. Acta Naturae.
6:69–75. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Boukalova S, Hubackova S, Milosevic M,
Ezrova Z, Neuzil J and Rohlena J: Dihydroorotate dehydrogenase in
oxidative phosphorylation and cancer. Biochim Biophys Acta Mol
Basis Dis. 1866:1657592020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Torraco A, Bianchi M, Verrigni D, Gelmetti
V, Riley L, Niceta M, Martinelli D, Montanari A, Guo Y, Rizza T, et
al: A novel mutation in NDUFB11 unveils a new clinical phenotype
associated with lactic acidosis and sideroblastic anemia. Clin
Genet. 91:441–447. 2017. View Article : Google Scholar
|
50
|
Qian Y, Liang X, Kong P, Cheng Y, Cui H,
Yan T, Wang J, Zhang L, Liu Y, Guo S, et al: Elevated DHODH
expression promotes cell proliferation via stabilizing β-catenin in
esophageal squamous cell carcinoma. Cell Death Dis. 11:8622020.
View Article : Google Scholar
|
51
|
Hatinguais R, Pradhan A, Brown GD, Brown
AJP, Warris A and Shekhova E: Mitochondrial reactive oxygen species
regulate immune responses of macrophages to aspergillus fumigatus.
Front Immunol. 12:6414952021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kirkland RA and Franklin JL: Bax, reactive
oxygen, and cytochrome c release in neuronal apoptosis. Antioxid
Redox Signal. 5:589–596. 2003. View Article : Google Scholar : PubMed/NCBI
|
53
|
Rabchevsky AG, Michael FM and Patel SP:
Mitochondria Focused neurotherapeutics for spinal cord injury. Exp
Neurol. 330:1133322020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhong Z, Umemura A, Sanchez-Lopez E, Liang
S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, et al:
NF-κB restricts inflammasome activation via elimination of damaged
mitochondria. Cell. 164:896–910. 2016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Cogliati S, Frezza C, Soriano ME, Varanita
T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A,
Gomes LC, et al: Mitochondrial cristae shape determines respiratory
chain supercomplexes assembly and respiratory efficiency. Cell.
155:160–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Tian H, Li S and Yu K: DJ-1 alleviates
high glucose-induced endothelial cells injury via PI3K/Akt-eNOS
signaling pathway. Mol Med Rep. 17:1205–1211. 2018.
|
57
|
Liu L, Dong Z, Lei Q, Yang J, Hu H, Li Q,
Ji Y, Guo L, Zhang Y, Liu Y and Cui H: Inactivation/deficiency of
DHODH induces cell cycle arrest and programed cell death in
melanoma. Oncotarget. 8:112354–112370. 2017. View Article : Google Scholar
|