1
|
Dillmann WH: Diabetic cardiomyopathy: What
is it and can it be fixed? Circ Res. 124:1160–1162. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Jia G, Whaley-Connell A and Sowers JR:
Diabetic cardiomyopathy: A hyperglycaemia- and
insulin-resistance-induced heart disease. Diabetologia. 61:21–28.
2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jia G, DeMarco VG and Sowers JR: Insulin
resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat
Rev Endocrinol. 12:144–153. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Paolillo S, Marsico F, Prastaro M, Renga
F, Esposito L, De Martino F, Di Napoli P, Esposito I, Ambrosio A,
Ianniruberto M, et al: Diabetic cardiomyopathy: Definition,
diagnosis, and therapeutic implications. Heart Fail Clin.
15:341–347. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Feng X, Sureda A, Jafari S, Memariani Z,
Tewari D, Annunziata G, Barrea L, Hassan STS, Šmejkal K, Malaník M,
et al: Berberine in cardiovascular and metabolic diseases: From
mechanisms to therapeutics. Theranostics. 9:1923–1951. 2019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Imenshahidi M and Hosseinzadeh H:
Berberine and barberry (Berberis vulgaris): A clinical
review. Phytother Res. 33:504–523. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pang B, Zhao LH, Zhou Q, Zhao TY, Wang H,
Gu CJ and Tong XL: Application of berberine on treating type 2
diabetes mellitus. Int J Endocrinol. 2015:9057492015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang Y, Gu Y, Ren H, Wang S, Zhong H,
Zhao X, Ma J, Gu X, Xue Y, Huang S, et al: Gut microbiome-related
effects of berberine and probiotics on type 2 diabetes (the PREMOTE
study). Nat Commun. 11:50152020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang J, Deng B, Liu Q, Huang Y, Chen W, Li
J, Zhou Z, Zhang L, Liang B, He J, et al: Pyroptosis and
ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in
cardiomyocytes are essential for myocardial fibrosis in response to
pressure overload. Cell Death Dis. 11:5742020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wei J, Zhao Y, Liang H, Du W and Wang L:
Preliminary evidence for the presence of multiple forms of cell
death in diabetes cardiomyopathy. Acta Pharm Sin B. 12:1–17. 2022.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kovacs SB and Miao EA: Gasdermins:
Effectors of pyroptosis. Trends Cell Biol. 27:673–684. 2017.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhaolin Z, Guohua L, Shiyuan W and Zuo W:
Role of pyroptosis in cardiovascular disease. Cell Prolif.
52:e125632019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bushati N and Cohen SM: microRNA
functions. Annu Rev Cell Dev Biol. 23:175–205. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Duygu B, de Windt LJ and da Costa Martins
PA: Targeting microRNAs in heart failure. Trends Cardiovasc Med.
26:99–110. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mohr AM and Mott JL: Overview of microRNA
biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Schulte C, Karakas M and Zeller T:
microRNAs in cardiovascular disease-clinical application. Clin Chem
Lab Med. 55:687–704. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
He X, Kuang G, Wu Y and Ou C: Emerging
roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med.
11:e4682021. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Xia Q, Wu F, Wu WB, Dong H, Huang ZY, Xu
L, Lu FE and Gong J: Berberine reduces hepatic ceramide levels to
improve insulin resistance in HFD-fed mice by inhibiting HIF-2α.
Biomed Pharmacother. 150:1129552022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li G, Xing W, Zhang M, Geng F, Yang H,
Zhang H, Zhang X, Li J, Dong L and Gao F: Antifibrotic
cardioprotection of berberine via downregulating myocardial IGF-1
receptor-regulated MMP-2/MMP-9 expression in diabetic rats. Am J
Physiol Heart Circ Physiol. 315:H802–H813. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cai L, Li W, Wang G, Guo L, Jiang Y and
Kang YJ: Hyperglycemia-induced apoptosis in mouse myocardium:
Mitochondrial cytochrome C-mediated caspase-3 activation pathway.
Diabetes. 51:1938–1948. 2022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ren Z, Yu J, Wu Z, Si W, Li X, Liu Y, Zhou
J, Deng R and Chen D: MicroRNA-210-5p contributes to cognitive
impairment in early vascular dementia rat model through targeting
Snap25. Front Mol Neurosci. 11:3882018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Benetatos L and Vartholomatos G:
Deregulated microRNAs in multiple myeloma. Cancer. 118:878–887.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL,
Cheng K, Sun RY, Zhou D, Han J and Wu Q: Tom20 senses
iron-activated ROS signaling to promote melanoma cell pyroptosis.
Cell Res. 28:1171–1185. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chang W, Zhang M, Meng Z, Yu Y, Yao F,
Hatch GM and Chen L: Berberine treatment prevents cardiac
dysfunction and remodeling through activation of 5′-adenosine
monophosphate-activated protein kinase in type 2 diabetic rats and
in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol.
769:55–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dong S, Zhang S, Chen Z, Zhang R, Tian L,
Cheng L, Shang F and Sun J: Berberine could ameliorate cardiac
dysfunction via interfering myocardial lipidomic profiles in the
rat model of diabetic cardiomyopathy. Front Physiol. 9:10422018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang W, Zhang M, Li J, Meng Z, Wei S, Du
H, Chen L and Hatch GM: Berberine improves insulin resistance in
cardiomyocytes via activation of 5′-adenosine
monophosphate-activated protein kinase. Metabolism. 62:1159–1167.
2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tang M, Yuan D and Liao P: Berberine
improves intestinal barrier function and reduces inflammation,
immunosuppression, and oxidative stress by regulating the
NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets.
Environ Pollut. 289:1178652021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xu J and Núñez G: The NLRP3 inflammasome:
Activation and regulation. Trends Biochem Sci. 48:331–344. 2023.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chamorro-Jorganes A, Sweaad WK, Katare R,
Besnier M, Anwar M, Beazley-Long N, Sala-Newby G, Ruiz-Polo I,
Chandrasekera D, Ritchie AA, et al: METTL3 regulates angiogenesis
by modulating let-7e-5p and miRNA-18a-5p expression in endothelial
cells. Arterioscler Thromb Vasc Biol. 41:e325–e337. 2021.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Nandi SS, Katsurada K, Mahata SK and Patel
KP: Neurogenic hypertension mediated mitochondrial abnormality
leads to cardiomyopathy: Contribution of UPRmt and
norepinephrine-miR-18a-5p-HIF-1α axis. Front Physiol.
12:7189822021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H,
Xia M, Chang X, Lu Y, Li Y, et al: Berberine attenuates
nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1
pathway. Free Radic Biol Med. 141:192–204. 2019. View Article : Google Scholar : PubMed/NCBI
|