METTL14‑mediated RNA methylation in digestive system tumors
- Authors:
- Jiexuan Hu
- Haishan Lin
- Cong Wang
- Qiang Su
- Bangwei Cao
-
Affiliations: Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China - Published online on: August 4, 2023 https://doi.org/10.3892/ijmm.2023.5289
- Article Number: 86
-
Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Li S, Kuo HC, Yin R, Wu R, Liu X, Wang L, Hudlikar R, Peter RM and Kong AN: Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem Pharmacol. 175:1138902020. View Article : Google Scholar : PubMed/NCBI | |
Goel A and Boland CR: Epigenetics of colorectal cancer. Gastroenterology. 143:1442–1460.e1. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Treloar AE and Lupien M: Emergence of the noncoding cancer genome: A target of genetic and epigenetic alterationsthe noncoding cancer genome. Cancer Discov. 6:1215–1229. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Shi Y, Shen H and Xie W: m6A-binding proteins: The emerging crucial performers in epigenetics. J Hematol Oncol. 13:352020. View Article : Google Scholar | |
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, et al: Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis. 1868:1665122022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Jones PA, Issa JP and Baylin S: Targeting the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bird A: Perceptions of epigenetics. Nature. 447:396–398. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang P, Teng X, Zhang Z and Song S: Comprehensive analysis of expression regulation for RNA m6A regulators with clinical significance in human cancers. Front Oncol. 11:6243952021. View Article : Google Scholar : PubMed/NCBI | |
Song N, Cui K, Zhang K, Yang J, Liu J, Miao Z, Zhao F, Meng H, Chen L, Chen C, et al: The role of m6A RNA methylation in cancer: Implication for nature products anti-cancer research. Front Pharmacol. 13:9333322022. View Article : Google Scholar : PubMed/NCBI | |
Chen DH, Zhang JG, Wu CX and Li Q: Non-Coding RNA m6A modification in cancer: Mechanisms and therapeutic targets. Front Cell Dev Biol. 9:7785822021. View Article : Google Scholar | |
Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yi YC, Chen XY, Zhang J and Zhu JS: Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol Cancer. 19:1212020. View Article : Google Scholar | |
Li H, Wu H, Wang Q, Ning S, Xu S and Pang D: Dual effects of N6-methyladenosine on cancer progression and immunotherapy. Mol Ther Nucleic Acids. 24:25–39. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Xie W, Pickering BF, Chu KL, Savino AM, Yang X, Luo H, Nguyen DT, Mo S, Barin E, et al: N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 39:958–972.e8. 2021. View Article : Google Scholar | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, Hu W, Zhang Y, Liu H, Dai L, et al: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 18:1272019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhao Y, Chen J, Peng C, Zhang Y, Tong R, Cheng Q, Yang B, Feng X, Lu Y, et al: ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Mol Cancer. 19:1232020. View Article : Google Scholar : | |
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar : PubMed/NCBI | |
He PC and He C: m6A RNA methylation: From mechanisms to therapeutic potential. EMBO J. 40:e1059772021. View Article : Google Scholar | |
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6A mRNA methylation in 3' UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. View Article : Google Scholar | |
Wei CM and Moss B: Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry. 16:1672–1676. 1977. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar | |
Wang N, Huo X, Zhang B, Chen X, Zhao S, Shi X, Xu H and Wei X: METTL3-Mediated ADAMTS9 suppression facilitates angiogenesis and carcinogenesis in gastric cancer. Front Oncol. 12:8618072022. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Liu J, Wang Y, Chen W, Liu Z, Zhu L and Zhu W: METTL3 promotes colorectal cancer metastasis by stabilizing PLAU mRNA in an m6A-dependent manner. Biochem Biophys Res Commun. 614:9–16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, et al: METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 69:1193–1205. 2020. View Article : Google Scholar | |
Zhou H, Yin K, Zhang Y, Tian J and Wang S: The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochim Biophys Acta Rev Cancer. 1876:1886092021. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W, Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ruszkowska A: METTL16, methyltransferase-like protein 16: Current insights into structure and function. Int J Mol Sci. 22:21762021. View Article : Google Scholar : PubMed/NCBI | |
Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Trindade F, Tellechea Ó, Torrelo A, Requena L and Colmenero I: Wilms tumor 1 expression in vascular neoplasms and vascular malformations. Am J Dermatopathol. 33:569–572. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang LJ, Xue Y, Li H, Huo R, Yan Z, Wang J, Xu H, Wang J, Cao Y and Zhao JZ: Wilms' tumour 1-associating protein inhibits endothelial cell angiogenesis by m6A-dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. J Cell Mol Med. 24:4981–4991. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Wang JZ, Wei JF and Lu C: Role of m6A methyltransferase component VIRMA in multiple human cancers. Cancer Cell Int. 21:1722021. View Article : Google Scholar | |
Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, Abdelfattah N, Onyeagucha BC, Cui X, Lai Z, et al: Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci Adv. 4:eaar82632018. View Article : Google Scholar | |
Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 561:556–560. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shan K, Zhou RM, Xiang J, Sun YN, Liu C, Lv MW and Xu JJ: FTO regulates ocular angiogenesis via m6A-YTHDF2-dependent mechanism. Exp Eye Res. 197:1081072020. View Article : Google Scholar | |
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, et al: FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation. 139:518–532. 2019. View Article : Google Scholar : | |
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Hu J, Sun X, Yang K, Yang L, Kong L, Zhang B, Li F, Li C, Shi B, et al: Loss of m6A Demethylase ALKBH5 Promotes post-ischemic Angiogenesis via post-transcriptional Stabilization of WNT5A. Clin Transl Med. 11:e4022021. View Article : Google Scholar : PubMed/NCBI | |
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP and Conrad NK: The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 169:824–835.e14. 2017. View Article : Google Scholar : | |
Yan H, Zhang L, Cui X, Zheng S and Li R: Roles and mechanisms of the m6A reader YTHDC1 in biological processes and diseases. Cell Death Discov. 8:2372022. View Article : Google Scholar | |
Dai XY, Shi L, Li Z, Yang HY, Wei JF and Ding Q: Main N6-methyladenosine readers: YTH family proteins in cancers. Front Oncol. 11:6353292021. View Article : Google Scholar : PubMed/NCBI | |
Gao LB, Zhu XL, Shi JX, Yang L, Xu ZQ and Shi SL: HnRNPA2B1 promotes the proliferation of breast cancer MCF-7 cells via the STAT3 pathway. J Cell Biochem. 122:472–484. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z Liu B, et al: YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 19:1522020. View Article : Google Scholar : PubMed/NCBI | |
Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018. View Article : Google Scholar | |
Śledź P and Jinek M: Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. 5:e184342016. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Choe J, Du P, Triboulet R and Gregory RI: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar | |
Bujnicki JM, Feder M, Radlinska M and Blumenthal RM: Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA: m(6)A methyltransferase. J Mol Evol. 55:431–444. 2002. View Article : Google Scholar : PubMed/NCBI | |
Han SH and Choe J: Diverse molecular functions of m6A mRNA modification in cancer. Exp Mol Med. 52:738–749. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar | |
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Zeng K, Xu M, He B, Pan B, et al: Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (albany NY). 12:21638–21659. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, Zhang KJ, Zhang X, Zhou Y, Zhang T, et al: Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res. 27:1216–1230. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar | |
Lin R, Zhan M, Yang L, Wang H, Shen H, Huang S, Huang X, Xu S, Zhang Z, Li W, et al: Deoxycholic acid modulates the progression of gallbladder cancer through N6-methyladenosine-dependent microRNA maturation. Oncogene. 39:4983–5000. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Qian Cai Q, Sheng Fu L, Wei Dong Y, Fan F and Zhong Wu X: Reduced N6-Methyladenosine Mediated by METTL3 Acetylation Promotes MTF1 expression and hepatocellular carcinoma cell growth. Chem Biodivers. 19:e2022003332022. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Zuo Y, Peng Y and Zuo L: Function of N6-methyladenosine modification in tumors. J Oncol. 2021:64615522021. View Article : Google Scholar : PubMed/NCBI | |
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S and Liu T: The critical role of RNA m6A methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Su R, Weng H, Huang H, Li Z and Chen J: RNA N6-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 28:507–517. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu BE, Wang XY, Gu XY, Zou C, Gao ZJ, Zhang H and Fan Y: N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers: Roles, mechanisms, and applications. Mol Cancer. 18:1782019. View Article : Google Scholar | |
Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, Gong J and Shen L: Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 8:4766–4781. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xiao M, Zhang L, Li L, Zhu G, Shen E, Lv M, Lu X and Sun Z: The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal. 35:e236552021. | |
Yao Q, He L, Gao X, Tang N, Lin L, Yu X and Wang D: The m6A methyltransferase METTL14-mediated N6-methyladenosine modification of PTEN mRNA inhibits tumor growth and metastasis in stomach adenocarcinoma. Front Oncol. 11:6997492021. View Article : Google Scholar : PubMed/NCBI | |
Fan HN, Chen ZY, Chen XY, Chen M, Yi YC, Zhu JS and Zhang J: METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 21:512022. View Article : Google Scholar : | |
Lin JX, Lian NZ, Gao YX, Zheng QL, Yang YH, Ma YB, Xiu ZS, Qiu QZ, Wang HG, Zheng CH, et al: m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer. Cell Death Dis. 13:4632022. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Wu Z, Tan B, Liu Z, Zu Z, Wu X, Bi Y and Hu X: Ibuprofen promotes p75 neurotrophin receptor expression through modifying promoter methylation and N6-methyladenosine-RNA-methylation in human gastric cancer cells. Bioengineered. 13:14595–14604. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu N and Ji H: N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis. Bioengineered. 12:4081–4091. 2021. View Article : Google Scholar : PubMed/NCBI | |
Balogh J, Victor D III, Asham EH, Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM and Monsour HP Jr: Hepatocellular carcinoma: A review. J Hepatocell Carcinoma. 3:41–53. 2016. View Article : Google Scholar : PubMed/NCBI | |
Raoul JL and Edeline J: Systemic treatment of hepatocellular carcinoma: Standard of care in China and elsewhere. Lancet Oncol. 21:479–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li ZL, Yan WT, Zhang J, Zhao YJ, Lau WY, Mao XH, Zeng YY, Zhou YH, Gu WM, Wang H, et al: Identification of actual 10-year survival after hepatectomy of HBV-related hepatocellular carcinoma: A multicenter study. J Gastrointest Surg. 23:288–296. 2019. View Article : Google Scholar | |
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar | |
Zhou T, Ren Z and Chen C: METTL14 as a predictor of postoperative survival outcomes of patients with hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 40:567–572. 2020.In Chinese. PubMed/NCBI | |
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology. 65:529–543. 2017. View Article : Google Scholar | |
Laptenko O and Prives C: Transcriptional regulation by p53: One protein, many possibilities. Cell Death Differ. 13:951–961. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghazi T, Nagiah S and Chuturgoon AA: Fusaric acid decreases p53 expression by altering promoter methylation and m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics. 16:79–91. 2021. View Article : Google Scholar : | |
Shi Y, Zhuang Y, Zhang J, Chen M and Wu S: METTL14 inhibits hepatocellular carcinoma metastasis through regulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent manner. Cancer Manag Res. 12:13173–13184. 2020. View Article : Google Scholar : | |
Zhou T, Li S, Xiang D, Liu J, Sun W, Cui X, Ning B, Li X, Cheng Z, Jiang W, et al: m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance. Signal Transduct Target Ther. 5:2962020. View Article : Google Scholar | |
Du L, Li Y, Kang M, Feng M, Ren Y, Dai H, Wang Y, Wang Y and Tang B: USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Cancer Res. 81:3822–3834. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Yang G, Zhang W, Liu Q, Liu G, Liu P, Xu L, Wang J, Yan Z, Han H, et al: Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 25:10197–10212. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, Zhang L, Yang L, Gu C, Huang X, et al: Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 30:2342–2353. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Pan B, Zhang X, Wang Z, Qiu J, Wang X and Tang N: Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol. 38:1159–1173. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang N, Zeng J, Wang T, Shen Y, Ma C and Yang M: N6-methyladenosine-modified lncRNA ARHGAP5-AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clin Transl Med. 12:e11072022. View Article : Google Scholar | |
Wang L, Yi X, Xiao X, Zheng Q, Ma L and Li B: Exosomal miR-628-5p from M1 polarized macrophages hinders m6A modification of circFUT8 to suppress hepatocellular carcinoma progression. Cell Mol Biol Lett. 27:1062022. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teng S, Li YE, Yang M, Qi R, Huang Y, Wang Q, Zhang Y, Chen S, Li S, Lin K, et al: Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer. Cell Res. 30:34–49. 2020. View Article : Google Scholar : | |
Tian J, Ying P, Ke J, Zhu Y, Yang Y, Gong Y, Zou D, Peng X, Yang N, Wang X, et al: ANKLE1 N6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int J Cancer. 146:3281–3293. 2020. View Article : Google Scholar | |
Yang X, Zhang S, He C, Xue P, Zhang L, He Z, Zang L, Feng B, Sun J and Zheng M: METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 19:462020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 19:1062020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Gan M, Chen C, Zhang Y, Kong J, Zhang H and Lai M: Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N6-methyladenosine methylation through methyltransferase-like 14. Cancer Sci. 112:3243–3254. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wei W, Zhang ZY, Liu Y, Shi B, Zhong W, Zhang HS, Fang X, Sun CL, Wang JB and Liu LX: TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis. 13:32021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J and Rana TM: m6A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 39:e1045142020. View Article : Google Scholar | |
Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, Liu Y, Liu J, Chang R, Li Y, et al: The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth. Cancer Cell. 39:945–957.e10. 2021. View Article : Google Scholar | |
Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, Shen C, Ma Y, Jiang S, Ma D, et al: Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology. 161:1552–1566.e12. 2021. View Article : Google Scholar | |
Luo M, Huang Z, Yang X, Chen Y, Jiang J, Zhang L, Zhou L, Qin S, Jin P, Fu S, et al: PHLDB2 mediates cetuximab resistance via interacting with EGFR in latent metastasis of colorectal cancer. Cell Mol Gastroenterol Hepatol. 13:1223–1242. 2022. View Article : Google Scholar : | |
Kamisawa T, Wood LD, Itoi T and Takaori K: Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK and Hruban RH: Recent progress in pancreatic cancer. CA Cancer J Clin. 63:318–348. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr JM, Neoptolemos J, Real FX, Van Laethem JL and Heinemann V: Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology. 15:8–18. 2015. View Article : Google Scholar | |
Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, Li X, Xu S, Miao J, Guo J, et al: Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 19:1302020. View Article : Google Scholar | |
Jiang Z, Song X, Wei Y, Li Y, Kong D and Sun J: N(6)-methyladenosine-mediated miR-380-3p maturation and upregulation promotes cancer aggressiveness in pancreatic cancer. Bioengineered. 13:14460–14471. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, Miao X and Yang L: Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol. 122:1057312020. View Article : Google Scholar : PubMed/NCBI | |
Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, Butowski N, Campian JL, Clark SW, Fabiano AJ, et al: Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 18:1537–1570. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Ou S, Zhou Y, Liu P, Zhang P, Li Z, Xu R and Li Y: m6A Methyltransferase METTL14-Mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer. Front Oncol. 11:6963712021. View Article : Google Scholar | |
Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D, Peng X, Ying P, Zhang M, Niu S, et al: N6-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression. Gut. 69:2180–2192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Yang C, Wang ZW, Hu JF, Pan JJ, Liao CY, Zhang JQ, Chen JZ, Huang Y, Huang L, et al: CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol. 14:602021. View Article : Google Scholar : PubMed/NCBI | |
Chen FQ, Zheng H, Gu T, Hu YH, Yang L, Huang ZP, Qiao GL and Li HJ: Modification of STIM2 by m6A RNA methylation inhibits metastasis of cholangiocarcinoma. Ann Transl Med. 10:402022. View Article : Google Scholar | |
Tomczak K, Czerwińska P and Wiznerowicz M: The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol (Pozn). 19(1A): A68–A77. 2015.PubMed/NCBI | |
Kong F, Wang K and Wang L: Systematic analysis of the expression profile and prognostic significance of m6A regulators and PD-L1 in hepatocellular carcinoma. Discov Oncol. 13:1312022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li F, Peng Y, Fang J and Zhou J: Identification of three m6A-related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma. Cancer Med. 9:1877–1889. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei H and Bai L: M6A regulatory genes play an important role in the prognosis, progression and immune microenvironment of pancreatic adenocarcinoma. Cancer Invest. 39:39–54. 2021. View Article : Google Scholar | |
Zhang T, Sheng P and Jiang Y: m6A regulators are differently expressed and correlated with immune response of pancreatic adenocarcinoma. J Cancer Res Clin Oncol. 149:2805–2822. 2023. View Article : Google Scholar | |
Cai C, Long J, Huang Q, Han Y, Peng Y, Guo C, Liu S, Chen Y, Shen E, Long K, et al: M6A 'Writer' gene METTL14: A favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer. Front Oncol. 11:6152962021. View Article : Google Scholar | |
Chen Y, Wang S, Cho WC, Zhou X and Zhang Z: Prognostic Implication of the m6A RNA Methylation Regulators in Rectal Cancer. Front Genet. 12:6042292021. View Article : Google Scholar | |
Xu Z, Chen Q, Shu L, Zhang C, Liu W and Wang P: Expression profiles of m6A RNA methylation regulators, PD-L1 and immune infiltrates in gastric cancer. Front Oncol. 12:9703672022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang Y, Chen L, Liu Y, Xu C, Jiang D, Song Q, Wang H, Wang L, Lin Y, et al: Identification of clinical prognostic features of esophageal cancer based on m6A regulators. Front Immunol. 13:9503652022. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, Li L, Chen R, Wang Y, Deng R, et al: SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 46:5195–5208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen HM, Li H, Lin MX, Fan WJ, Zhang Y, Lin YT and Wu SX: Research progress for RNA modifications in physiological and pathological angiogenesis. Front Genet. 13:9526672022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Lu Z, Qi C, Yu C, Li Y, Huan W, Wang R, Luo W, Shen D, Ding L, et al: N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 21:1112022. View Article : Google Scholar | |
Wen H, Tang J, Cui Y, Hou M and Zhou J: m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle. 22:100–116. 2023. View Article : Google Scholar |