1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Testa U, Castelli G and Pelosi E: Lung
cancers: Molecular characterization, clonal heterogeneity and
evolution, and cancer stem cells. Cancers (Basel). 10:2482018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Normanno N, Maiello MR, Chicchinelli N,
Iannaccone A, Esposito C, De Cecio R, D'alessio A and De Luca A:
Targeting the EGFR T790M mutation in non-small-cell lung cancer.
Expert Opin Ther Targets. 21:159–165. 2017. View Article : Google Scholar
|
4
|
Ramalingam SS, Vansteenkiste J, Planchard
D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y,
Chewaskulyong B, et al: Overall survival with osimertinib in
untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 382:41–50.
2020. View Article : Google Scholar
|
5
|
Nagasaka M, Zhu VW, Lim SM, Greco M, Wu F
and Ou SI: Beyond osimertinib: the development of third-generation
EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC. J Thorac
Oncol. 16:740–763. 2021. View Article : Google Scholar
|
6
|
Park S and Ahn MJ: Osimertinib in central
nervous system progressive EGFR-mutant lung cancer: Do we need to
detect T790M? Ann Oncol. 31:15822020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakatani K, Yamaoka T, Ohba M, Fujita KI,
Arata S, Kusumoto S, Taki-Takemoto I, Kamei D, Iwai S, Tsurutani J
and Ohmori T: KRAS and EGFR amplifications mediate resistance to
rociletinib and osimertinib in acquired afatinib-resistant NSCLC
harboring exon 19 deletion/T790M in EGFR. Mol Cancer Ther.
18:112–126. 2019. View Article : Google Scholar
|
8
|
Nishiyama A, Takeuchi S, Adachi Y, Otani
S, Tanimoto A, Sasaki M, Matsumoto S, Goto K and Yano S: MET
amplification results in heterogeneous responses to osimertinib in
EGFR-mutant lung cancer treated with erlotinib. Cancer Sci.
111:3813–3823. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tian X, Wang R, Gu T, Ma F, Laster KV, Li
X, Liu K, Lee MH and Dong Z: Costunolide is a dual inhibitor of
MEK1 and AKT1/2 that overcomes osimertinib resistance in lung
cancer. Mol Cancer. 21:1932022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Booth L, West C, Moore RP, Von Hoff D and
Dent P: GZ17-6.02 and pemetrexed interact to kill
osimertinib-resistant NSCLC cells that express mutant ERBB1
proteins. Front Oncol. 11:7110432021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cao P, Li Y, Shi R, Yuan Y, Gong H, Zhu G,
Zhang Z, Chen C, Zhang H, Liu M, et al: Combining EGFR-TKI with
SAHA overcomes EGFR-TKI-acquired resistance by reducing the
protective autophagy in non-small cell lung cancer. Front Chem.
10:8379872022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fu K, Xie F, Wang F and Fu L: Therapeutic
strategies for EGFR-mutated non-small cell lung cancer patients
with osimertinib resistance. J Hematol Oncol. 15:1732022.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ebbesen KK, Hansen TB and Kjems J:
Insights into circular RNA biology. RNA Biol. 14:1035–1045. 2017.
View Article : Google Scholar :
|
14
|
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang
J, Huang X, Liang S, Chen R, Chen S and Guo L: Circular RNA cESRP1
sensitises small cell lung cancer cells to chemotherapy by sponging
miR-93-5p to inhibit TGF-β signalling. Cell Death Differ.
27:1709–1727. 2020. View Article : Google Scholar
|
15
|
Wang C, Tan S, Li J, Liu WR, Peng Y and Li
W: CircRNAs in lung cancer-biogenesis, function and clinical
implication. Cancer Lett. 492:106–115. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang T, Liu Z, She Y, Deng J, Zhong Y,
Zhao M, Li S, Xie D, Sun X, Hu X and Chen C: A novel protein
encoded by circASK1 ameliorates gefitinib resistance in lung
adenocarcinoma by competitively activating ASK1-dependent
apoptosis. Cancer Lett. 520:321–331. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang LX, Gao J, Long X, Zhang PF, Yang X,
Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA
circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung
adenocarcinomas and squamous cell carcinomas via the
miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu
J and Zhang XM: Circular RNA circFGFR1 promotes progression and
anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung
cancer cells. Mol Cancer. 18:1792019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wen C, Xu G, He S, Huang Y, Shi J, Wu L
and Zhou H: Screening circular RNAs related to acquired gefitinib
resistance in non-small cell lung cancer cell lines. J Cancer.
11:3816–3826. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen T, Luo J, Gu Y, Huang J, Luo Q and
Yang Y: Comprehensive analysis of circular RNA profiling in
AZD9291-resistant non-small cell lung cancer cell lines. Thorac
Cancer. 10:930–941. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma J, Qi G and Li L: A novel serum
exosomes-based biomarker hsa_circ_0002130 facilitates
osimertinib-resistance in non-small cell lung cancer by sponging
miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pan J, Xing J, Yu H, Wang Z, Wang W and
Pan Y: CircRBM33 promotes migration, invasion and mediates
osimertinib resistance in non-small cell lung cancer cell line. Ann
Transl Med. 11:2522023. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tang ZH, Jiang XM, Guo X, Fong CM, Chen X
and Lu JJ: Characterization of osimertinib (AZD9291)-resistant
non-small cell lung cancer NCI-H1975/OSIR cell line. Oncotarget.
7:81598–81610. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Damgaard MV and Treebak JT: Protocol for
qPCR analysis that corrects for cDNA amplification efficiency. STAR
Protoc. 3:1015152022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Koboldt DC, Zhang Q, Larson DE, Shen D,
McLellan MD, Lin L, Miller CA, Mardis ER, Ding L and Wilson RK:
VarScan 2: Somatic mutation and copy number alteration discovery in
cancer by exome sequencing. Genome Res. 22:568–576. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Talevich E, Shain AH, Botton T and Bastian
BC: CNVkit: Genome-wide copy number detection and visualization
from targeted DNA sequencing. PLoS Comput Biol. 12:e10048732016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang X, Maity TK, Ross KE, Qi Y, Cultraro
CM, Bahta M, Pitts S, Keswani M, Gao S, Nguyen KDP, et al:
Alterations in the global proteome and phosphoproteome in third
generation EGFR TKI resistance reveal drug targets to circumvent
resistance. Cancer Res. 81:3051–3066. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Birgisdottir ÅB and Johansen T: Autophagy
and endocytosis-interconnections and interdependencies. J Cell Sci.
133:jcs2281142020. View Article : Google Scholar
|
30
|
Ganapathy AS, Saha K, Suchanec E, Singh V,
Verma A, Yochum G, Koltun W, Nighot M, Ma T and Nighot P: AP2M1
mediates autophagy-induced CLDN2 (claudin 2) degradation through
endocytosis and interaction with LC3 and reduces intestinal
epithelial tight junction permeability. Autophagy. 18:2086–2103.
2022. View Article : Google Scholar :
|
31
|
Nnah IC, Wang B, Saqcena C, Weber GF,
Bonder EM, Bagley D, De Cegli R, Napolitano G, Medina DL, Ballabio
A and Dobrowolski R: TFEB-driven endocytosis coordinates MTORC1
signaling and autophagy. Autophagy. 15:151–164. 2019. View Article : Google Scholar
|
32
|
Yochum ZA, Cades J, Wang H, Chatterjee S,
Simons BW, O'Brien JP, Khetarpal SK, Lemtiri-Chlieh G, Myers KV,
Huang EH, et al: Targeting the EMT transcription factor TWIST1
overcomes resistance to EGFR inhibitors in EGFR-mutant
non-small-cell lung cancer. Oncogene. 38:656–670. 2019. View Article : Google Scholar
|
33
|
Yu HA, Schoenfeld AJ, Makhnin A, Kim R,
Rizvi H, Tsui D, Falcon C, Houck‑Loomis B, Meng F, Yang JL, et al:
Effect of osimertinib and bevacizumab on progression-free survival
for patients with metastatic EGFR-mutant lung cancers: A phase 1/2
single-group open-label trial. JAMA Oncol. 6:1048–1054. 2020.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Tang ZH and Lu JJ: Osimertinib resistance
in non-small cell lung cancer: Mechanisms and therapeutic
strategies. Cancer Lett. 420:242–246. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen Z, Chen Q, Cheng Z, Gu J, Feng W, Lei
T, Huang J, Pu J, Chen X and Wang Z: Long non-coding RNA CASC9
promotes gefitinib resistance in NSCLC by epigenetic repression of
DUSP1. Cell Death Dis. 11:8582020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Verusingam ND, Chen YC, Lin HF, Liu CY,
Lee MC, Lu KH, Cheong SK, Han-Kiat Ong A, Chiou SH and Wang ML:
Generation of osimertinib-resistant cells from epidermal growth
factor receptor L858R/T790M mutant non-small cell lung carcinoma
cell line. J Chin Med Assoc. 84:248–254. 2021. View Article : Google Scholar
|
37
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kristensen LS, Jakobsen T, Hager H and
Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat
Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar
|
39
|
Li R, Jiang J, Shi H, Qian H, Zhang X and
Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci.
77:1661–1680. 2020. View Article : Google Scholar
|
40
|
Zhang M, Bai X, Zeng X, Liu J, Liu F and
Zhang Z: circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta.
523:120–130. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen H, Liu S, Li M, Huang P and Li X:
circ_0003418 inhibits tumorigenesis and cisplatin chemoresistance
through Wnt/β-catenin pathway in hepatocellular carcinoma. Onco
Targets Ther. 12:9539–9549. 2019. View Article : Google Scholar :
|
42
|
Zheng F and Xu R: CircPVT1 contributes to
chemotherapy resistance of lung adenocarcinoma through
miR-145-5p/ABCC1 axis. Biomed Pharmacother. 124:1098282020.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu S, Jiang Z, Xiao P, Li X, Chen Y, Tang
H, Chai Y, Liu Y, Zhu Z, Xie Q, et al: Hsa_circ_0005576 promotes
osimertinib resistance through the miR‑512‑5p/IGF1R axis in lung
adenocarcinoma cells. Cancer Sci. 113:79–90. 2022. View Article : Google Scholar
|
44
|
Dai C, Ma Z, Si J, An G, Zhang W, Li S and
Ma Y: Hsa_circ_0007312 promotes third‑generation epidermal growth
factor receptor‑tyrosine kinase inhibitor resistance through
pyroptosis and apoptosis via the MiR‑764/MAPK1 axis in lung
adenocarcinoma cells. J Cancer. 13:2798–2809. 2022. View Article : Google Scholar :
|
45
|
Ji Y, Zhao Q, Feng W, Peng Y, Hu B and
Chen Q: N6-methyladenosine modification of CIRCKRT17 initiated by
METTL3 promotes osimertinib resistance of lung adenocarcinoma by
EIF4A3 to enhance YAP1 stability. Cancers (Basel). 14:55822022.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Lin Z, Niu Y, Wan A, Chen D, Liang H, Chen
X, Sun L, Zhan S, Chen L, Cheng C, et al: RNA m6A
methylation regulates sorafenib resistance in liver cancer through
FOXO3-mediated autophagy. EMBO J. 39:e1031812020. View Article : Google Scholar
|
47
|
Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang
C, Wu Z, Rong X, Huang N, Sun L, et al: Long noncoding RNA (lncRNA)
EIF3J-DT induces chemoresistance of gastric cancer via autophagy
activation. Autophagy. 17:4083–4101. 2021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Paquette M, El-Houjeiri L, C Zirden L,
Puustinen P, Blanchette P, Jeong H, Dejgaard K, Siegel PM and Pause
A: AMPK-dependent phosphorylation is required for transcriptional
activation of TFEB and TFE3. Autophagy. 17:3957–3975. 2021.
View Article : Google Scholar : PubMed/NCBI
|