Role of circular RNA as competing endogenous RNA in ovarian cancer (Review)
- Authors:
- Wanlu Ye
- Nan Xiang
- Qing Wang
- Yanming Lu
-
Affiliations: Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110003, P.R. China - Published online on: March 5, 2024 https://doi.org/10.3892/ijmm.2024.5365
- Article Number: 41
-
Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
La Vecchia C: Ovarian cancer: Epidemiology and risk factors. Eur J Cancer Prev. 26:55–62. 2017. View Article : Google Scholar | |
Kuroki L and Guntupalli SR: Treatment of epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI | |
Armstrong DK, Alvarez RD, Backes FJ, Bakkum-Gamez JN, Barroilhet L, Behbakht K, Berchuck A, Chen LM, Chitiyo VC, Cristea M, et al: NCCN guidelines® insights: Ovarian cancer, version 3.2022. J Natl Compr Canc Netw. 20:972–980. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P and Wu M: Circrna: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar : PubMed/NCBI | |
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA and Paz-Ares J: Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 39:1033–1037. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ren H, Guo M, Qian J, Yang Y and Gu C: Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 19:910–928. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Wang Q, Guo N, Wang H, Chen H, Ni G and Li P: CircRNA circ_0072995 promotes the progression of epithelial ovarian cancer by modulating miR-147a/CDK6 axis. Aging (Albany NY). 12:17209–17223. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Zong ZH, Liu Y, Chen S, Wang LL and Zhao Y: circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther Nucleic Acids. 18:882–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS and Makunin IV: Non-coding RNA. Hum Mol Genet. 15:R17–R29. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H and Tsukahara T: A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 15:9331–9342. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Cheng J, Quan C, Wen H, Feng Z, Hu Q, Zhu J, Huang Y and Wu X: circCELSR1 (hsa_circ_0063809) contributes to paclitaxel resistance of ovarian cancer cells by regulating FOXR2 expression via miR-1252. Mol Ther Nucleic Acids. 19:718–730. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Nazarali AJ and Ji S: Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res. 6:1167–1176. 2016.PubMed/NCBI | |
Yang X, Mei J, Wang H, Gu D, Ding J and Liu C: The emerging roles of circular RNAs in ovarian cancer. Cancer Cell Int. 20:2652020. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30:4414–4422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Panda AC, Grammatikakis I, Munk R, Gorospe M and Abdelmohsen K: Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA. 8: View Article : Google Scholar : 2017. | |
Su Q and Lv X: Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics. 112:1680–1685. 2020. View Article : Google Scholar | |
Su L, Li R, Zhang Z, Liu J, Du J and Wei H: Identification of altered exosomal microRNAs and mRNAs in Alzheimer's disease. Ageing Res Rev. 73:1014972022. View Article : Google Scholar | |
Zhang J, Luo Q, Li X, Guo J, Zhu Q, Lu X, Wei L, Xiang Z, Peng M, Ou C and Zou Y: Novel role of immune-related non-coding RNAs as potential biomarkers regulating tumour immunoresponse via MICA/NKG2D pathway. Biomark Res. 11:862023. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Zhu N, Guo W, Wang X, Li K, Yan J, Jiang C, Han S, Xiang H, Wu X, et al: RNA-Seq revealed a circular RNA-microRNA-mRNA regulatory network in hantaan virus infection. Front Cell Infect Microbiol. 10:972020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, et al: Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer. 20:42021. View Article : Google Scholar : PubMed/NCBI | |
Najafi S: Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol. 206:939–953. 2022. View Article : Google Scholar : PubMed/NCBI | |
Najafi S: The emerging roles and potential applications of circular RNAs in ovarian cancer: A comprehensive review. J Cancer Res Clin Oncol. 149:2211–2234. 2023. View Article : Google Scholar | |
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, et al: microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol. 250:1258632023. View Article : Google Scholar : PubMed/NCBI | |
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E and Najafi S: The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract. 249:1547292023. View Article : Google Scholar : PubMed/NCBI | |
Najafi S, Aghaei Zarch SM, Majidpoor J, Pordel S, Aghamiri S, Fatih Rasul M, Asemani Y, Vakili O, Mohammadi V, Movahedpour A and Arghiani N: Recent Insights into the roles of circular rnas in human brain development and neurologic diseases. Int J Biol Macromol. 225:1038–1048. 2023. View Article : Google Scholar | |
Xu YX, Pu SD, Li X, Yu ZW, Zhang YT, Tong XW, Shan YY and Gao XY: Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol Res. 178:1061352022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer. 18:1162019. View Article : Google Scholar : PubMed/NCBI | |
Karreth FA and Pandolfi PP: ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3:1113–1121. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lan C, Peng H, Hutvagner G and Li J: Construction of competing endogenous RNA networks from paired RNA-seq data sets by pointwise mutual information. BMC Genomics. 20(Suppl 9): S9432019. View Article : Google Scholar | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Fang S, Jiang M, Zhao X, Zhou C and Gong Z: Circular RNAs: Regulatory functions in respiratory tract cancers. Clin Chim Acta. 510:264–271. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 77:1661–1680. 2020. View Article : Google Scholar | |
Rong Z, Xu J, Shi S, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X and Liang C: Circular RNA in pancreatic cancer: A novel avenue for the roles of diagnosis and treatment. Theranostics. 11:2755–2769. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B and Asemi Z: Circular RNAs: A novel biomarker for cervical cancer. J Cell Physiol. 235:718–274. 2020. View Article : Google Scholar | |
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR and Mirzaei H: Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol. 157:1031922021. View Article : Google Scholar | |
Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, Zhang N, Zhang H, Liu Y, Chen T, et al: circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 27:1638–1652. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Liang M, Liu H, Huang J, Li P, Wang C, Zhang Y, Lin Y and Jiang X: CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 11:10652020. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Yuan L and Zou X: Circular RNA circ-BNC2 (hsa_ circ_0008732) inhibits the progression of ovarian cancer through microRNA-223-3p/FBXW7 axis. J Ovarian Res. 15:952022. View Article : Google Scholar | |
Xu Q, Deng B, Li M, Chen Y and Zhuan L: circRNA-UBAP2 promotes the proliferation and inhibits apoptosis of ovarian cancer though miR-382-5p/PRPF8 axis. J Ovarian Res. 13:812020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Chi C, Zhou L, Chen Y and Tang X: Circular PVT1 regulates cell proliferation and invasion via miR-149-5p/FOXM1 axis in ovarian cancer. J Cancer. 12:611–621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Meng K and Qiu R: Circular RNA Circ_0013958 functions as a tumor promoter in ovarian cancer by regulating miR-637/PLXNB2 axis. Front Genet. 12:6444512021. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Goncalves KA, Li S, Kishikawa H, Sun G, Yang H, Vanli N, Wu Y, Jiang Y, Hu MG, et al: Plexin-B2 mediates physiologic and pathologic functions of angiogenin. Cell. 171:849–864.e25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, et al: The influence of circular RNAs on autophagy and disease progression. Autophagy. 18:240–253. 2022. View Article : Google Scholar : | |
Zhang Z, Zhu H and Hu J: CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis. 12:2192021. View Article : Google Scholar : PubMed/NCBI | |
Gan X, Zhu H, Jiang X, Obiegbusi SC, Yong M, Long X and Hu J: CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer. 19:452020. View Article : Google Scholar : PubMed/NCBI | |
Song W, Zeng Z, Zhang Y, Li H, Cheng H, Wang J and Wu F: CircRNF144B/miR-342-3p/FBXL11 axis reduced autophagy and promoted the progression of ovarian cancer by increasing the ubiquitination of Beclin-1. Cell Death Dis. 13:8572022. View Article : Google Scholar : PubMed/NCBI | |
Claesson-Welsh L and Welsh M: Vegfa and tumour angiogenesis. J Intern Med. 273:114–127. 2013. View Article : Google Scholar | |
Wang J, Li Y, Zhou JH, Shen FR, Shi X and Chen YG: CircATRNL1 activates Smad4 signaling to inhibit angiogenesis and ovarian cancer metastasis via miR-378. Mol Oncol. 15:1217–1233. 2021. View Article : Google Scholar : | |
Schwarte-Waldhoff I and Schmiegel W: Smad4 transcriptional pathways and angiogenesis. Int J Gastrointest Cancer. 31:47–59. 2002. View Article : Google Scholar | |
Chen J, Li X, Yang L, Li M, Zhang Y and Zhang J: CircASH2L promotes ovarian cancer tumorigenesis, angiogenesis, and lymphangiogenesis by regulating the miR-665/VEGFA axis as a competing endogenous RNA. Front Cell Dev Biol. 8:5955852020. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Liu W and Li M: Circ_0061140 contributes to ovarian cancer progression by targeting miR-761/LETM1 signaling. Biochem Genet. 61:628–650. 2023. View Article : Google Scholar | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar | |
Shang BQ, Li ML, Quan HY, Hou PF, Li ZW, Chu SF, Zheng JN and Bai J: Functional roles of circular RNAs during epithelial-to-mesenchymal transition. Mol Cancer. 18:1382019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J, Li X, Lu B, Cheng X, Liu P, et al: CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 18:1442019. View Article : Google Scholar : PubMed/NCBI | |
Bai F, Zhang LH, Liu X, Wang C, Zheng C, Sun J, Li M, Zhu WG and Pei XH: GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer. Theranostics. 11:8218–8233. 2021. View Article : Google Scholar : PubMed/NCBI | |
Menezes ME, Mitra A, Shevde LA and Samant RS: DNAJB6 governs a novel regulatory loop determining Wnt/β-catenin signalling activity. Biochem J. 444:573–580. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tiwari N, Meyer-Schaller N, Arnold P, Antoniadis H, Pachkov M, van Nimwegen E and Christofori G: Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS One. 8:e573292013. View Article : Google Scholar : PubMed/NCBI | |
Zeng XY, Yuan J, Wang C, Zeng D, Yong JH, Jiang XY, Lan H and Xiao SS: circCELSR1 facilitates ovarian cancer proliferation and metastasis by sponging miR-598 to activate BRD4 signals. Mol Med. 26:702020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lin S, Mo Z, Jiang J, Tang H, Wu C and Song J: CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J Cancer. 11:599–609. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Dong ZN, Qiu BQ, Hu M, Liang XQ, Dai X, Hong D and Sun YF: CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/E2F1 axis. Aging (Albany NY). 12:14080–14091. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu SG, Zhou P, Chen JX, Lei J, Hua L, Dong Y, Hu M, Lian CL, Yang LC and Zhou J: circ-PTK2 (hsa_circ_0008305) regulates the pathogenic processes of ovarian cancer via miR-639 and FOXC1 regulatory cascade. Cancer Cell Int. 21:2772021. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Xu Y, Ye W, Jiang J and Wu C: Circular RNA S-7 promotes ovarian cancer EMT via sponging miR-641 to up-regulate ZEB1 and MDM2. Biosci Rep. 40:BSR202008252020. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhang J, He Y and Wang Y: hsa_circ_0061140 knockdown reverses FOXM1-mediated cell growth and metastasis in ovarian cancer through miR-370 sponge activity. Mol Ther Nucleic Acids. 13:55–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Chen X, Qiao W, Kong L, Sun D and Li Z: Transcription factor E2F1 promotes EMT by regulating ZEB2 in small cell lung cancer. BMC Cancer. 17:7192017. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Chen X: miR-4792 inhibits epithelial-mesenchymal transition and invasion in nasopharyngeal carcinoma by targeting FOXC1. Biochem Biophys Res Commun. 468:863–869. 2015. View Article : Google Scholar : PubMed/NCBI | |
Caramel J, Ligier M and Puisieux A: Pleiotropic roles for ZEB1 in cancer. Cancer Res. 78:30–35. 2018. View Article : Google Scholar | |
Katoh M, Igarashi M, Fukuda H, Nakagama H and Katoh M: Cancer genetics and genomics of human FOX family genes. Cancer Lett. 328:198–206. 2013. View Article : Google Scholar | |
Wang Y and Patti GJ: The Warburg effect: A signature of mitochondrial overload. Trends Cell Boil. 33:1014–1020. 2023. View Article : Google Scholar | |
Yu G, Yang Z, Peng T and Lv Y: Circular RNAs: Rising stars in lipid metabolism and lipid disorders. J Cell Physiol. 236:4797–4806. 2021. View Article : Google Scholar | |
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Xu X, Yang Q, Liang L and Qiao S: Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int. 20:3362020. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Liu LU, He C, Zhao M, Ni R, Zhang Z and Shui C: Circ_0002711 knockdown suppresses cell growth and aerobic glycolysis by modulating miR-1244/ROCK1 axis in ovarian cancer. J Biosci. 46:212021. View Article : Google Scholar : PubMed/NCBI | |
Hou W and Zhang Y: Circ_0025033 promotes the progression of ovarian cancer by activating the expression of LSM4 via targeting miR-184. Pathol Res Pract. 217:1532752021. View Article : Google Scholar | |
Chen L, Lin YH, Liu GQ, Huang JE, Wei W, Yang ZH, Hu YM, Xie JH and Yu HZ: Clinical significance and potential role of LSM4 overexpression in hepatocellular carcinoma: An integrated analysis based on multiple databases. Front Genet. 12:8049162022. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Qu S, Zhai Y and Yang X: circ_0025033 promotes ovarian cancer development via regulating the hsa_miR-370-3p/SLC1A5 axis. Cell Mol Biol Lett. 27:942022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ye X, Xia X and Lin X: Circular RNA ABCB10 correlates with advanced clinicopathological features and unfavorable survival, and promotes cell proliferation while reduces cell apoptosis in epithelial ovarian cancer. Cancer Biomark. 26:151–161. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Zhu Y, Zhang W, Lang J and Ning L: Utility of plasma circBNC2 as a diagnostic biomarker in epithelial ovarian cancer. Onco Targets Ther. 12:9715–9723. 2019. View Article : Google Scholar | |
Ning L, Lang J and Wu L: Plasma circN4BP2L2 is a promising novel diagnostic biomarker for epithelial ovarian cancer. BMC Cancer. 22:62022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Li Z, Yang S, Wang Y and Luan Z: CircEXOC6B suppresses the proliferation and motility and sensitizes ovarian cancer cells to paclitaxel through miR-376c-3p/FOXO3 axis. Cancer Biother Radiopharm. 37:802–814. 2022. | |
Zhu J, Luo JE, Chen Y and Wu Q: Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer. J Ovarian Res. 14:1362021. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Yan L, Zhong J, Hong L, Zhang N and Luo X: Circ_0025033 deficiency suppresses paclitaxel resistance and malignant development of paclitaxel-resistant ovarian cancer cells by modulating the miR-532-3p/FOXM1 network. Immunopharmacol Immunotoxicol. 44:275–286. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Zhao Z, Wu Y, Wang Y, Zhao Y and Wang J: Circular RNA circTNPO3 regulates paclitaxel resistance of ovarian cancer cells by miR-1299/NEK2 signaling pathway. Mol Ther Nucleic Acids. 21:780–791. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yuan D, Guo T, Qian H, Ge H, Zhao Y, Huang A, Wang X, Cao X, Zhu D, He C and Yu H: Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Dev Res. 83:1383–1393. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo Y and Gui R: Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol. 31:e752020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yin Z, Wu Y, Zhan Q, Huang H and Fan J: Circular RNA lysophosphatidic acid receptor 3 (circ-LPAR3) enhances the cisplatin resistance of ovarian cancer. Bioengineered. 13:3739–3750. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Ban R, Liu W, Wang H, Li S, Yue Z, Zhu G, Zhuan Y and Wang C: MiRNA-409-3p enhances cisplatin-sensitivity of ovarian cancer cells by blocking the autophagy mediated by Fip200. Oncol Res. Jan 2–2018.Epub ahead of print. View Article : Google Scholar | |
Ghafouri-Fard S, Khoshbakht T, Bahranian A, Taheri M and Hallajnejad M: CircMTO1: A circular RNA with roles in the carcinogenesis. Biomed Pharmacother. 142:1120252021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wu A, Yang B, Zhu X, Teng Y and Ai Z: Profiling and bioinformatics analyses reveal differential circular RNA expression in ovarian cancer. Gene. 724:1441502020. View Article : Google Scholar | |
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Xu X, Zhang X and Zhou Y: Circular RNA-9119 suppresses in ovarian cancer cell viability via targeting the microRNA-21-5p-PTEN-Akt pathway. Aging (Albany NY). 12:14314–14328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Li S, Zhao X, Yuan Y, Zhang B and Guan Y: Knockdown of circular RNA Hsa_circ_0000714 can regulate RAB17 by sponging miR-370-3p to reduce paclitaxel resistance of ovarian cancer through CDK6/RB pathway. Onco Targets Ther. 13:13211–13224. 2020. View Article : Google Scholar : | |
Ji J, Li C, Wang J, Wang L, Huang H, Li Y and Fang J: Hsa_circ_0001756 promotes ovarian cancer progression through regulating IGF2BP2-mediated RAB5A expression and the EGFR/MAPK signaling pathway. Cell Cycle. 21:685–696. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li Y, Zhao W, Liu G and Yang Q: Circ-PGAM1 promotes malignant progression of epithelial ovarian cancer through regulation of the miR-542-3p/CDC5L/PEAK1 pathway. Cancer Med. 9:3500–3521. 2020. View Article : Google Scholar : PubMed/NCBI | |
He SL, Zhao X and Yi SJ: CircAHNAK upregulates EIF2B5 expression to inhibit the progression of ovarian cancer by modulating the JAK2/STAT3 signaling pathway. Carcinogenesis. 43:941–955. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Zheng G, Gao X, Chen C, Zhou M and Zhang L: Propofol suppresses cell viability, cell cycle progression and motility and induces cell apoptosis of ovarian cancer cells through suppressing MEK/ERK signaling via targeting circVPS13C/miR-145 axis. J Ovarian Res. 14:302021. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Ding C, Gong W and Lu C: ncRNAs mediated RPS6KA2 inhibits ovarian cancer proliferation via p38/MAPK signaling pathway. Front Oncol. 13:10283012023. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li Z, Zhu G, Hong L, Hu C, Wang K, Cui K and Hao C: RNA-binding protein IGF2BP2 enhances circ_0000745 abundancy and promotes aggressiveness and stemness of ovarian cancer cells via the microRNA-3187-3p/ERBB4/PI3K/AKT axis. J Ovarian Res. 14:1542021. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Qiu Q, Zhou Q, Li J, Yang J, Zheng C, Luo A, Li X, Zhang H, Cheng X, et al: circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt signaling pathway in ovarian cancer. Mol Cancer. 21:1372022. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Chen Y, Ye X and Xia X: Circular RNA ABCB10 promotes cell proliferation and invasion, but inhibits apoptosis via regulating the microRNA-1271-mediated Capn4/Wnt/β-catenin signaling pathway in epithelial ovarian cancer. Mol Med Rep. 23:3872021. View Article : Google Scholar | |
Wu Y, Zhou J, Li Y, Shi X, Shen F, Chen M, Chen Y and Wang J: Hsa_circ_0001445 works as a cancer suppressor via miR-576-5p/SFRP1 axis regulation in ovarian cancer. Cancer Med. 12:5736–5750. 2023. View Article : Google Scholar |