Promising predictive molecular biomarkers for cervical cancer (Review)
- Authors:
- Marcela Lizano
- Adela Carrillo‑García
- Erick De La Cruz‑Hernández
- Leonardo Josué Castro‑Muñoz
- Adriana Contreras‑Paredes
-
Affiliations: Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico, Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico, The Wistar Institute, Philadelphia, PA 19104, USA - Published online on: April 4, 2024 https://doi.org/10.3892/ijmm.2024.5374
- Article Number: 50
-
Copyright: © Lizano et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
The International Agency for Research on Cancer: GLOBOCAN 2020: New Global Cancer Data. https://www.uicc.org/news/globocan-2020-new-global-cancer-data. Accessed December 17 2020 | |
Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J and Bray F: Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob Health. 8:e191–203. 2020. View Article : Google Scholar : | |
Falcaro M, Castañon A, Ndlela B, Checchi M, Soldan K, Lopez-Bernal J, Elliss-Brookes L and Sasieni P: The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: A register-based observational study. Lancet. 398:2084–2092. 2021. View Article : Google Scholar : PubMed/NCBI | |
Moscicki AB, Schiffman M, Burchell A, Albero G, Giuliano AR, Goodman MT, Kjaer SK and Palefsky J: Updating the natural history of human papillomavirus and anogenital cancers. Vaccine. 30(Suppl 5): F24–F33. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tommasino M: The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol. 26:13–21. 2014. View Article : Google Scholar | |
Hammer A, Rositch A, Qeadan F, Gravitt PE and Blaakaer J: Age-specific prevalence of HPV16/18 genotypes in cervical cancer: A systematic review and meta-analysis. Int J Cancer. 138:2795–2803. 2016. View Article : Google Scholar | |
Wright JD, Matsuo K, Huang Y, Tergas AI, Hou JY, Khoury-Collado F, St Clair CM, Ananth CV, Neugut AI and Hershman DL: Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines. Obstet Gynecol. 134:49–57. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Juan A, Redondo A, Rubio MJ, García Y, Cueva J, Gaba L, Yubero A, Alarcón J, Maximiano C and Oaknin A: SEOM clinical guidelines for cervical cancer (2019). Clin Transl Oncol. 22:270–278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu SC, Huang EY, Hu CF, Ou YC, ChangChien CC, Wang CJ, Tsai CC, Fu HC, Wu CH and Lin H: Pretreatment factors associated with recurrence for patients with cervical cancer international federation of gynecology and obstetrics stage IB1 disease. Gynecol Obstet Invest. 81:339–345. 2016. View Article : Google Scholar | |
Rodriguez NM: Participatory innovation for human papillomavirus screening to accelerate the elimination of cervical cancer. Lancet Glob Health. 9:e582–e583. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Lei N, Tian W, Guo R, Chen M, Qiu L, Wu F, Li Y and Chang L: Recent progress of the tumor microenvironmental metabolism in cervical cancer radioresistance. Front Oncol. 12:9996432022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Cai H, Xiao ZX, Wang H and Yang P: Effect of radiotherapy on the survival of cervical cancer patients: An analysis based on SEER database. Medicine (Baltimore). 98:e164212019. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food and Drug Administration: About Biomarkers and Qualification. https://www.fda.gov/drugs/biomarker-qualificationprogram/about-biomarkers-and-qualification. Accessed July 7, 2021 | |
Volkova LV, Pashov AI and Omelchuk NN: Cervical Carcinoma: Oncobiology and Biomarkers. Int J Mol Sci. 22:125712021. View Article : Google Scholar : PubMed/NCBI | |
Ballman KV: Biomarker: Predictive or Prognostic? J Clin Oncol. 33:3968–3971. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yusufaly TI, Zou J, Nelson TJ, Williamson CW, Simon A, Singhal M, Liu H, Wong H, Saenz CC, Mayadev J, et al: Improved Prognosis of Treatment Failure in Cervical Cancer with Nontumor PET/CT Radiomics. J Nucl Med. 63:1087–1093. 2022. View Article : Google Scholar : | |
Chang R, Qi S, Yue Y, Zhang X, Song J and Qian W: Predictive radiomic models for the chemotherapy response in non-small-cell lung cancer based on computerized-tomography images. Front Oncol. 11:6461902021. View Article : Google Scholar : PubMed/NCBI | |
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, et al: Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front Mol Biosci. 6:912019. View Article : Google Scholar : PubMed/NCBI | |
Wang LH, Wu CF, Rajasekaran N and Shin YK: Loss of tumor suppressor gene function in human cancer: An overview. Cell Physiol Biochem. 51:2647–2693. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N, Cerasuolo A, Pezzuto F, Tornesello AL and Buonaguro FM: The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer. Front Oncol. 10:1502020. View Article : Google Scholar : PubMed/NCBI | |
Gyparaki MT, Basdra EK and Papavassiliou AG: DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med (Berl). 91:1249–1256. 2013. View Article : Google Scholar : PubMed/NCBI | |
Charakorn C, Thadanipon K, Chaijindaratana S, Rattanasiri S, Numthavaj P and Thakkinstian A: The association between serum squamous cell carcinoma antigen and recurrence and survival of patients with cervical squamous cell carcinoma: A systematic review and meta-analysis. Gynecol Oncol. 150:190–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dixit CK, Kadimisetty K, Otieno BA, Tang C, Malla S, Krause CE and Rusling JF: Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst. 141:536–547. 2016. View Article : Google Scholar : | |
Füzéry AK, Levin J, Chan MM and Chan DW: Translation of proteomic biomarkers into FDA approved cancer diagnostics: Issues and challenges. Clin Proteomics. 10:132013. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Shi Y, Shen Y, Cao L, Zhang W and Guan X: Analysis of different HER-2 mutations in breast cancer progression and drug resistance. J Cell Mol Med. 19:2691–2701. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhang H, Zhang M, Meng Q, Cai L and Zhang Q: Elevation of serum CEA and CA15-3 levels during antitumor therapy predicts poor therapeutic response in advanced breast cancer patients. Oncol Lett. 14:7549–7556. 2017. | |
Alegría-Baños JA, Jiménez-López JC, Vergara-Castañeda A, de León DFC, Mohar-Betancourt A, Pérez-Montiel D, Sánchez-Domínguez G, García-Villarejo M, Olivares-Pérez C, Hernández-Constantino Á, et al: Kinetics of HE4 and CA125 as prognosis biomarkers during neoadjuvant chemotherapy in advanced epithelial ovarian cancer. J Ovarian Res. 14:962021. View Article : Google Scholar : PubMed/NCBI | |
Islam MS, Afrin S, Jones SI and Segars J: Selective progesterone receptor modulators-mechanisms and therapeutic utility. Endocr Rev. 41:bnaa0122020. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E and Cardoso F: Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 75:284–298. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R and Pezzi V: Estrogen receptors-mediated apoptosis in hormone-dependent cancers. Int J Mol Sci. 23:12422022. View Article : Google Scholar : PubMed/NCBI | |
Seale KN and Tkaczuk KHR: Circulating biomarkers in breast cancer. Clin Breast Cancer. 22:e319–e331. 2022. View Article : Google Scholar | |
Banerjee S, Yoon H, Ting S, Tang CM, Yebra M, Wenzel AT, Yeerna H, Mesirov JP, Wechsler-Reya RJ, Tamayo P and Sicklick JK: KITlow cells mediate imatinib resistance in gastrointestinal stromal tumor. Mol Cancer Ther. 20:2035–2048. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jing W, Zhang R, Chen X, Zhang X and Qiu J: Association of glycosylation-related genes with different patterns of immune profiles and prognosis in cervical cancer. J Pers Med. 13:5292023. View Article : Google Scholar : PubMed/NCBI | |
National center for Biotechnology Information. https://clinicaltrials.gov/. 2023, Clinicaltrials.gov. | |
Hishinuma E, Shimada M, Matsukawa N, Li B, Motoike IN, Hagihara T, Shigeta S, Tokunaga H, Saigusa D, Kinoshita K, et al: Identification of predictive biomarkers for diagnosis and radiation sensitivity of uterine cervical cancer using wide-targeted metabolomics. J Obstet Gynaecol Res. 49:2109–2117. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kilic S, Cracchiolo B, Gabel M, Haffty B and Mahmoud O: The relevance of molecular biomarkers in cervical cancer patients treated with radiotherapy. Ann Transl Med. 3:2612015.PubMed/NCBI | |
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M and Ramezani F: Up-down regulation of HIF-1α in cancer progression. Gene. 798:1457962021. View Article : Google Scholar | |
Le QT and Courter D: Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev. 27:351–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bishop AJ, Allen PK, Klopp AH, Meyer LA and Eifel PJ: Relationship Between Low Hemoglobin Levels and Outcomes After Treatment With Radiation or Chemoradiation in Patients With Cervical Cancer: Has the Impact of Anemia Been Overstated? Int J Radiat Oncol Biol Phys. 91:196–205. 2015. View Article : Google Scholar | |
Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, West CM and Stratford IJ: GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: Relationship to pimonidazole binding. Int J Cancer. 104:85–91. 2003. View Article : Google Scholar : PubMed/NCBI | |
Feldser D, Agani F, Iyer NV, Pak B, Ferreira G and Semenza GL: Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 59:3915–3938. 1999.PubMed/NCBI | |
Domènech M, Hernández A, Plaja A, Martínez-Balibrea E and Balañà C: Hypoxia: The cornerstone of glioblastoma. Int J Mol Sci. 22:126082021. View Article : Google Scholar : PubMed/NCBI | |
Lei R, Li J, Liu F, Li W, Zhang S, Wang Y, Chu X and Xu J: HIF-1α promotes the keloid development through the activation of TGF-beta/Smad and TLR4/MyD88/NF-kappaB pathways. Cell Cycle. 18:3239–3250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang PC, Liu X, Li MM, Ma YY, Sun HT, Tian XY, Wang Y, Liu M, Fu LS, Wang YF, et al: AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo. Biochem Pharmacol. 172:1137712020. View Article : Google Scholar | |
Apte RS, Chen DS and Ferrara N: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K, Suzuki S, Sakata J, Utsumi F, Niimi K, Yoshikawa N, Nishino K, Shibata K, Kikkawa F and Kajiyama H: The upregulated expression of vascular endothelial growth factor in surgically treated patients with recurrent/radioresistant cervical cancer of the uterus. Oncol Lett. 16:515–521. 2018.PubMed/NCBI | |
Yan B, Ma QF, Tan WF, Cai HN, Li YL, Zhou ZG, Dai X, Zhu FX, Xiong YJ, Xu M, et al: Expression of HIF-1α is a predictive marker of the efficacy of neoadjuvant chemotherapy for locally advanced cervical cancer. Oncol Lett. 20:841–849. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Xing L, Wei X, Liu X, Pang R, Qi L and Song S: Nonangiogenic function of VEGF and enhanced radiosensitivity of HeLa cells by inhibition of VEGF expression. Oncol Res. 20:93–101. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu P, Ou Y, Dong Y, Xu P and Yuan L: Expression of VEGF and HIF-1α in locally advanced cervical cancer: potential biomarkers for predicting preoperative radiochemotherapy sensitivity and prognosis. Onco Targets Ther. 9:3031–3037. 2016. | |
Wei LC, Wang N, Shi M, Liu JY, Li JP, Zhang Y, Huang YH, Li X and Chen Y: Clinical outcome observation of preoperative concurrent chemoradiotherapy/radiotherapy alone in 174 Chinese patients with local advanced cervical carcinoma. Onco Targets Ther. 6:67–74. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ferrandina G, Legge F, Fagotti A, Fanfani F, Distefano M, Morganti A, Cellini N and Scambia G: Preoperative concomitant chemoradiotherapy in locally advanced cervical cancer: Safety, outcome, and prognostic measures. Gynecol Oncol. 107(1 Suppl 1): S127–S132. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lèguevaque P, Motton S, Delannes M, Querleu D, Soulé-Tholy M, Tap G and Houvenaeghel G: Completion surgery or not after concurrent chemoradiotherapy for locally advanced cervical cancer? Eur J Obstet Gynecol Reprod Biol. 155:188–192. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sharma M, Khan R, Aggarwal M and Sharma A: Modulatory effects of chemoradiation on angiogenic factors and laminin in cervical cancer: Link with treatment response. Asian Pac J Cancer Prev. 18:2937–2944. 2017.PubMed/NCBI | |
Nguyen VT, Winterman S, Playe M, Benbara A, Zelek L, Pamoukdjian F and Bousquet G: Dose-Intense cisplatin-based neoadjuvant chemotherapy increases survival in advanced cervical cancer: An up-to-date meta-analysis. Cancers (Basel). 14:8422022. View Article : Google Scholar : PubMed/NCBI | |
Angioli R, Plotti F, Montera R, Aloisi A, Luvero D, Capriglione S, Terranova C, De Cicco Nardone C, Muzii L and Benedetti-Panici P: Neoadjuvant chemotherapy plus radical surgery followed by chemotherapy in locally advanced cervical cancer. Gynecol Oncol. 127:290–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Hu M, Yang R, Liu J, Zeng P and Zhao T: Decreasing expression of HIF-1α, VEGF-A, and Ki67 with efficacy of neoadjuvant therapy in locally advanced cervical cancer. Medicine (Baltimore). 102:e338202023. View Article : Google Scholar | |
Hu Y, Han Y, Shen Y, Chen J, Chen Y, Chen Y, Tang J, Xue M, Hong L, Cheng W, et al: Neoadjuvant chemotherapy for patients with international federation of gynecology and obstetrics stages IB3 and IIA2 cervical cancer: A multicenter prospective trial. BMC Cancer. 202:12702022. View Article : Google Scholar | |
Datta A, West C, O'Connor JPB, Choudhury A and Hoskin P: Impact of hypoxia on cervical cancer outcomes. Int J Gynecol Cancer. 31:1459–1470. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dunst J, Kuhnt T, Strauss HG, Krause U, Pelz T, Koelbl H and Haensgen G: Anemia in cervical cancers: Impact on survival, patterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys. 56:778–787. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shin NR, Lee YY, Kim SH, Choi CH, Kim TJ, Lee JW, Bae DS and Kim BG: Prognostic value of pretreatment hemoglobin level in patients with early cervical cancer. Obstet Gynecol Sci. 57:28–36. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barkati M, Fortin I, Mileshkin L, Bernshaw D, Carrier JF and Narayan K: Hemoglobin level in cervical cancer: a surrogate for an infiltrative phenotype. Int J Gynecol Cancer. 23:724–729. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gennigens C, De Cuypere M, Seidel L, Hermesse J, Barbeaux A, Forget F, Albert A, Jerusalem G and Kridelka F: Correlation between hematological parameters and outcome in patients with locally advanced cervical cancer treated by concomitant chemoradiotherapy. Cancer Med. 9:8432–8443. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Acosta P, Carrillo S, Gamboa O, Romero-Rojas A, Acosta J, Molano M, Balart-Serra J, Cotes M, Rancoule C and Magné N: Novel predictive biomarkers for cervical cancer prognosis. Mol Clin Oncol. 5:792–796. 2016. View Article : Google Scholar | |
Kasi PM and Grothey A: Chemotherapy-Induced neutropenia as a prognostic and predictive marker of outcomes in solid-tumor patients. Drugs. 78:737–745. 2018. View Article : Google Scholar : PubMed/NCBI | |
Markovina S, Wang S, Henke LE, Luke CJ, Pak SC, DeWees T, Pfeifer JD, Schwarz JK, Liu W, Chen S, et al: Serum squamous cell carcinoma antigen as an early indicator of response during therapy of cervical cancer. Br J Cancer. 118:72–78. 2018. View Article : Google Scholar : | |
Chen W, Xiu S, Xie X, Guo H, Xu Y, Bai P and Xia X: Prognostic value of tumor measurement parameters and SCC-Ag changes in patients with locally-advanced cervical cancer. Radiat Oncol. 17:62022. View Article : Google Scholar : PubMed/NCBI | |
Choi KH, Lee SW, Yu M, Jeong S, Lee JW and Lee JH: Significance of elevated SCC-Ag level on tumor recurrence and patient survival in patients with squamous-cell carcinoma of uterine cervix following definitive chemoradiotherapy: A multi-institutional analysis. J Gynecol Oncol. 30:e12019. View Article : Google Scholar | |
Xu D, Wang D, Wang S, Tian Y, Long Z and Ren X: Correlation between squamous cell carcinoma antigen level and the clinicopathological features of early-stage cervical squamous cell carcinoma and the predictive value of squamous cell carcinoma antigen combined with computed tomography scan for lymph node metastasis. Int J Gynecol Cancer. 27:1935–1942. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tantari M, Bogliolo S, Morotti M, Balaya V, Bouttitie F, Buenerd A, Magaud L, Lecuru F, Guani B, Mathevet P, et al: Lymph node involvement in early-stage cervical cancer: Is lymphangiogenesis a risk factor? Results from the MICROCOL Study. Cancers (Basel). 14:2122022. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Nam BH, Park JY, Seo SS, Ryu SY, Kim JW, Kim SC, Park SY and Nam JH: Risk Assessment tool for distant recurrence after platinum-based concurrent chemoradiation in patients with locally advanced cervical cancer: A Korean gynecologic oncology group study. J Clin Oncol. 30:2369–2374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mabuchi S, Isohashi F, Yokoi T, Takemura M, Yoshino K, Shiki Y, Ito K, Enomoto T, Ogawa K and Kimura T: A phase II study of postoperative concurrent carboplatin and paclitaxel combined with intensity-modulated pelvic radiotherapy followed by consolidation chemotherapy in surgically treated cervical cancer patients with positive pelvic lymph nodes. Gynecol Oncol. 141:240–246. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shim SH, Kim DY, Lee SJ, Kim SN, Kang SB, Lee SW, Park JY, Suh DS, Kim JH, Kim YM, et al: Prediction model for para-aortic lymph node metastasis in patients with locally advanced cervical cancer. Gynecol Oncol. 144:40–45. 2017. View Article : Google Scholar | |
Yoon HI, Cha J, Keum KC, Lee HY, Nam EJ, Kim SW, Kim S, Kim YT, Kim GE and Kim YB: Treatment outcomes of extended-field radiation therapy and the effect of concurrent chemotherapy on uterine cervical cancer with para-aortic lymph node metastasis. Radiat Oncol. 10:182015. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Fu C, Zhang Y, Wang J, Qiao N, Yang Q and Cheng Y: Extended-Field Intensity-Modulated Radiotherapy and Concurrent Cisplatin-Based Chemotherapy for Postoperative Cervical Cancer With Common Iliac or Para-Aortic Lymph Node Metastases: A Retrospective Review in a Single Institution. Int J Gynecol Cancer. 22:1220–1225. 2012. View Article : Google Scholar : PubMed/NCBI | |
Walker JL, Morrison A, DiSilvestro P and von Gruenigen VE; Gynecologic Oncology Group: A phase I/II study of extended field radiation therapy with concomitant paclitaxel and cisplatin chemotherapy in patients with cervical carcinoma metastatic to the para-aortic lymph nodes: A gynecologic oncology group study. Gynecol Oncol. 112:78–84. 2009. View Article : Google Scholar | |
Matsuo K, Shimada M, Aoki Y, Sakamoto M, Takeshima N, Fujiwara H, Matsumoto T, Mikami M and Sugiyama T: Comparison of adjuvant therapy for node-positive clinical stage IB-IIB cervical cancer: Systemic chemotherapy versus pelvic irradiation. Int J Cancer. 141:1042–1051. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jung PS, Kim DY, Lee SW, Park JY, Suh DS, Kim JH, Kim YM, Kim YT and Nam JH: clinical role of adjuvant chemotherapy after radical hysterectomy for FIGO Stage IB-IIA cervical cancer: Comparison with Adjuvant RT/CCRT using inverse-probability-of-treatment weighting. PLoS One. 10:e01322982015. View Article : Google Scholar : PubMed/NCBI | |
Strauss HG, Laban C, Lautenschläger C, Buchmann J, Schneider I and Koelbl H: SCC antigen in the serum as an independent prognostic factor in operable squamous cell carcinoma of the cervix. Eur J Cancer. 38:1987–1991. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Miao L, Wu H, Zhang Y and Fu C: Pretreatment squamous cell carcinoma antigen (SCC-Ag) as a predictive factor for the use of consolidation chemotherapy in cervical cancer patients after postoperative extended-field concurrent chemoradiotherapy. Technol Cancer Res Treat. 20:153303382110446262021. View Article : Google Scholar : PubMed/NCBI | |
Kawaguchi R, Furukawa N, Kobayashi H and Asakawa I: Posttreatment cut-off levels of squamous cell carcinoma antigen as a prognostic factor in patients with locally advanced cervical cancer treated with radiotherapy. J Gynecol Oncol. 24:313–320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ryu HK, Baek JS, Kang WD and Kim SM: The prognostic value of squamous cell carcinoma antigen for predicting tumor recurrence in cervical squamous cell carcinoma patients. Obstet Gynecol Sci. 58:368–376. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gadducci A, Tana R, Cosio S and Genazzani AR: The serum assay of tumour markers in the prognostic evaluation, treatment monitoring and follow-up of patients with cervical cancer: A review of the literature. Crit Rev Oncol Hematol. 66:10–20. 2008. View Article : Google Scholar | |
Jiang M, Chen P, Guo X, Zhang X, Gao Q, Zhang J, Zhao G and Zheng J: Identification of EGFR mutation status in male patients with non-small-cell lung cancer: Role of 18F-FDG PET/CT and serum tumor markers CYFRA21-1 and SCC-Ag. EJNMMI Res. 13:272023. View Article : Google Scholar : | |
Liu Z and Shi H: Prognostic role of squamous cell carcinoma antigen in cervical cancer: A Meta-analysis. Dis Markers. 2019:67103522019. View Article : Google Scholar : PubMed/NCBI | |
Anastasi E, Gigli S, Ballesio L, Angeloni A and Manganaro L: The complementary role of imaging and tumor biomarkers in gynecological cancers: An update of the literature. Asian Pac J Cancer Prev. 19:309–317. 2018.PubMed/NCBI | |
Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, et al: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 52:331–341. 2020. View Article : Google Scholar : PubMed/NCBI | |
Müller D and Győrffy B: DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer. 1877:1887222022. View Article : Google Scholar : PubMed/NCBI | |
He L, Zhao C, Zhang Q, Zinta G, Wang D, Lozano-Durán R and Zhu JK: Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc Natl Acad Sci USA. 118:e21073201182021. View Article : Google Scholar : PubMed/NCBI | |
Portela A and Esteller M: Epigenetic modifications and human disease. Nat Biotechnol. 28:1057–1068. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vural S, Palmisano A, Reinhold WC, Pommier Y, Teicher BA and Krushkal J: Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin Epigenetics. 13:492021. View Article : Google Scholar : PubMed/NCBI | |
Xing W, Sun H, Yan C, Zhao C, Wang D, Li M and Ma J: A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules. BMC Cancer. 21:2632021. View Article : Google Scholar : PubMed/NCBI | |
Levenson VV: DNA methylation as a universal biomarker. Expert Rev Mol Diagn. 10:481–488. 2010. View Article : Google Scholar : PubMed/NCBI | |
Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC and Ross JP: DNA Methylation cancer biomarkers: Translation to the Clinic. Front Genet. 10:11502019. View Article : Google Scholar : PubMed/NCBI | |
Clarke MA, Luhn P, Gage JC, Bodelon C, Dunn ST, Walker J, Zuna R, Hewitt S, Killian JK, Yan L, et al: Discovery and validation of candidate host DNA methylation markers for detection of cervical precancer and cancer. Int J Cancer. 141:701–710. 2017. View Article : Google Scholar : PubMed/NCBI | |
El Aliani A, El-Abid H, El Mallali Y, Attaleb M, Ennaji MM and El Mzibri M: Association between Gene Promoter Methylation and Cervical Cancer Development: Global Distribution and A Meta-analysis. Cancer Epidemiol Biomarkers Prev. 30:450–459. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Nie S, Li S, Meng H, Sun R, Yang J and Cheng W: Methylation-driven genes and their prognostic value in cervical squamous cell carcinoma. Ann Transl Med. 8:868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salta S, Maia-Moço L, Estevão-Pereira H, Sequeira JP, Vieira R, Bartosch C, Petronilho S, Monteiro P, Sousa A, Baldaque I, et al: Performance of DNA methylation-based biomarkers in the cervical cancer screening program of northern Portugal: A feasibility study. Int J Cancer. 149:1916–1925. 2021. View Article : Google Scholar : PubMed/NCBI | |
Verhoef VM, Bosgraaf RP, van Kemenade FJ, Rozendaal L, Heideman DAM, Hesselink AT, Bekkers RL, Steenbergen RD, Massuger LF, Melchers WJ, et al: Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): A randomised controlled non-inferiority trial. Lancet Oncol. 15:315–322. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sood S, Patel FD, Ghosh S, Arora A, Dhaliwal LK and Srinivasan R: Epigenetic Alteration by DNA Methylation of ESR1, MYOD1 and hTERT gene promoters is useful for prediction of response in patients of locally advanced invasive cervical carcinoma treated by chemoradiation. Clin Oncol (R Coll Radiol). 27:720–727. 2015. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Romero C, Pérez-Yépez EA, Martinez-Gutierrez AD, Campos-Parra A, Zentella-Dehesa A, Jacobo-Herrera N, López-Camarillo C, Corredor-Alonso G, Martínez-Coronel J, Rodríguez-Dorantes M, et al: Gene Promoter-Methylation signature as biomarker to predict cisplatin-radiotherapy sensitivity in locally advanced cervical cancer. Front Oncol. 12:7734382022. View Article : Google Scholar : PubMed/NCBI | |
Guerrero-Setas D, Pérez-Janices N, Blanco-Fernandez L, Ojer A, Cambra K, Berdasco M, Esteller M, Maria-Ruiz S, Torrea N and Guarch R: RASSF2 hypermethylation is present and related to shorter survival in squamous cervical cancer. Mod Pathol. 26:1111–1122. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki Y, Ur rutia R, Franco LM, Giliani S, Zhang K, Alazami AM, Dobbs AK, Masneri S, Joshi A, Otaizo-Carrasquero F, et al: PAX1 is essential for development and function of the human thymus. Sci Immunol. 5:eaax10362020. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Kong X, Jia Y, Jia Y, Ou W, Dai C, Li G and Gao R: An overview of PAX1: Expression, function and regulation in development and diseases. Front Cell Dev Biol. 10:10511022022. View Article : Google Scholar : PubMed/NCBI | |
Su PH, Lai HC, Huang RL, Chen LY, Wang YC, Wu TI, Chan MWY, Liao CC, Chen CW, Lin WY and Chang CC: Paired Box-1 (PAX1) activates multiple phosphatases and inhibits kinase cascades in cervical cancer. Sci Rep. 9:91952019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhou X, Zeng M, Zhou Y, Zhang Y, Liou YL and Zhu H: Methylation of PAX1 gene promoter in the prediction of concurrent chemo-radiotherapy efficacy in cervical cancer. J Cancer. 12:5136–5143. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zhang Z, Li L, Zhang K, Xu Y, Xia M, Zhou J, Gong Y, Chen J and Gong K: ZNF582 overexpression restrains the progression of clear cell renal cell carcinoma by enhancing the binding of TJP2 and ERK2 and inhibiting ERK2 phosphorylation. Cell Death Dis. 14:2122023. View Article : Google Scholar : PubMed/NCBI | |
Li N, He Y, Mi P and Hu Y: ZNF582 methylation as a potential biomarker to predict cervical intraepithelial neoplasia type III/worse: A meta-analysis of related studies in Chinese population. Medicine (Baltimore). 98:e142972019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Wang G, Tang J, Zhuang W, Wang LP, Liou YL, Liu YZ, Zhou HH and Zhu YS: DNA Methylation Status of PAX1 and ZNF582 in esophageal squamous cell carcinoma. Int J Environ Res Public Health. 14:2162017. View Article : Google Scholar : PubMed/NCBI | |
Huang RL, Chang CC, Su PH, Chen YC, Liao YP, Wang HC, Yo YT, Chao TK, Huang HC, Lin CY, et al: Methylomic Analysis Identifies Frequent DNA Methylation of Zinc Finger Protein 582 (ZNF582) in Cervical Neoplasms. PLoS One. 7:e410602012. View Article : Google Scholar : PubMed/NCBI | |
Wu NYY, Zhang X, Chu T, Zhu S, Deng Y, Zhou Y, Wang Y, Zhao X, Liu L, Fang C, et al: High methylation of ZNF582 in cervical adenocarcinoma affects radiosensitivity and prognosis. Ann Transl Med. 7:3282019. View Article : Google Scholar : PubMed/NCBI | |
Yuan T, Edelmann D, Fan Z, Alwers E, Kather JN, Brenner H and Hoffmeister M: Machine learning in the identification of prognostic DNA methylation biomarkers among patients with cancer: A systematic review of epigenome-wide studies. Artif Intell Med. 143:1025892023. View Article : Google Scholar : PubMed/NCBI | |
Ma JH, Huang Y, Liu LY and Feng Z: An 8-gene DNA methylation signature predicts the recurrence risk of cervical cancer. J Int Med Res. 49:030006052110184432021. View Article : Google Scholar : PubMed/NCBI | |
Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Weng Q, Ge J, Zhang X, Guo J and Ye G: tRNA-derived small RNAs: Mechanisms and potential roles in cancers. Genes Dis. 9:1431–1442. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhang Y, Tan D, Zhang X, Yan M, Zhang Y, Franklin R, Shahbazi M, Mackinlay K, Liu S, et al: PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol. 23:424–436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mendell JT: MicroRNAs: Critical regulators of development, cellular physiology and malignancy. Cell Cycle. 4:1179–1184. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen B, Gan C, Sun H, Zhang J and Feng L: A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, therapeutic targets, and delivery strategies for cancer therapy. Int J Nanomedicine. 18:7605–7635. 2023. View Article : Google Scholar : PubMed/NCBI | |
Matera AG, Terns RM and Terns MP: Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 8:209–220. 2007. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017. | |
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fort V, Khelifi G and Hussein SMI: Long non-coding RNAs and transposable elements: A functional relationship. Biochim Biophys Acta Mol Cell Res. 1868:1188372021. View Article : Google Scholar | |
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D and Zamore PD: PIWI-interacting RNAs: Small RNAs with big functions. Nat Rev Genet. 20:89–108. 2019. View Article : Google Scholar | |
Abramowicz A and Story MD: The long and short of It: The emerging roles of non-coding RNA in small extracellular vesicles. Cancers (Basel). 12:14452020. View Article : Google Scholar : PubMed/NCBI | |
Hahne JC, Lampis A and Valeri N: Vault RNAs: Hidden gems in RNA and protein regulation. Cell Mol Life Sci. 78:1487–1499. 2021. View Article : Google Scholar : | |
Fan CM, Wang JP, Tang YY, Zhao J, He SY, Xiong F, Guo C, Xiang B, Zhou M, Li XL, et al: circMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci. 110:2180–2188. 2019. View Article : Google Scholar : PubMed/NCBI | |
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : | |
Bo H, Fan L, Gong Z, Liu Z, Shi L, Guo C, Guo C, Li X, Liao Q, Zhang W, et al: Upregulation and hypomethylation of lncRNA AFAP1-AS1 predicts a poor prognosis and promotes the migration and invasion of cervical cancer. Oncol Rep. 41:2431–2439. 2019.PubMed/NCBI | |
Xie M, Ma L, Xu T, Pan Y, Wang Q, Wei Y and Shu Y: Potential regulatory roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies. Mol Ther Nucleic Acids. 13:233–243. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lampropoulou DI, Pliakou E, Aravantinos G, Filippou D and Gazouli M: The Role of Exosomal Non-Coding RNAs in colorectal cancer drug resistance. Int J Mol Sci. 23:14732022. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al: MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 109:E2110–E2116. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R and Nishikura K: Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 13:13–21. 2006. View Article : Google Scholar | |
Zou K, Yang E, Cui T and Li Z: Circulating miR-326 could serve as a predictive biomarker for response to neoadjuvant chemotherapy in locally advanced cervical cancer. Front Oncol. 12:10367102022. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Schwarz JK, Lewis JS Jr, Huettner PC, Rader JS, Deasy JO, Grigsby PW and Wang X: A microRNA expression signature for cervical cancer prognosis. Cancer Res. 70:1441–1448. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pedroza-Torres A, Fernández-Retana J, Peralta-Zaragoza O, Jacobo-Herrera N, Cantú de Leon D, Cerna-Cortés JF, Lopez-Camarillo C and Pérez-Plasencia C: A microRNA expression signature for clinical response in locally advanced cervical cancer. Gynecol Oncol. 142:557–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Qin J, Chen A, Zhou J, Liu J, Cheng J, Qiu J and Zhang J: Downregulation of microRNA-145 is associated with aggressive progression and poor prognosis in human cervical cancer. Tumour Biol. 36:3703–3708. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fekete JT, Welker Á and Győrffy B: miRNA expression signatures of therapy response in squamous cell carcinomas. Cancers (Basel). 13:632020. View Article : Google Scholar | |
Wei H, Wen-Ming C and Jun-Bo J: Plasma miR-145 as a novel biomarker for the diagnosis and radiosensitivity prediction of human cervical cancer. J Int Med Res. 45:1054–1060. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Du L, Liu D, Qian L, Hu M, Yu M, Yang Z, Zhao M, Chen C, Guo L, et al: Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol. 228:148–157. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu M, An J, Huang M, Wang L, Tu B, Song Y, Ma K, Wang Y, Wang S, Zhu H, et al: MicroRNA-492 overexpression involves in cell proliferation, migration, and radiotherapy response of cervical squamous cell carcinomas. Mol Carcinog. 57:32–43. 2018. View Article : Google Scholar | |
Barik S, Mitra S, Suryavanshi M, Dewan A, Kaur I, Kumar D, Mishra M and Vishwakarma G: To study the role of pre-treatment microRNA (micro ribonucleic acid) expression as a predictor of response to chemoradiation in locally advanced carcinoma cervix. Cancer Rep. 4:e13482021. View Article : Google Scholar | |
Wei W and Liu C: Prognostic and predictive roles of microRNA-411 and its target STK17A in evaluating radiotherapy efficacy and their effects on cell migration and invasion via the p53 signaling pathway in cervical cancer. Mol Med Rep. 21:267–281. 2020. | |
Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, Teixeira-Carvalho A, Martins-Filho OA, Franco TMRF, Paula SOC, et al: Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Front Oncol. 11:6393392021. View Article : Google Scholar : PubMed/NCBI | |
Hasanzadeh M, Movahedi M, Rejali M, Maleki F, Moetamani-Ahmadi M, Seifi S, Hosseini Z, Khazaei M, Amerizadeh F, Ferns GA, et al: The potential prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer. J Cell Physiol. 234:1289–1294. 2019. View Article : Google Scholar | |
Ravegnini G, Gorini F, Dondi G, Tesei M, De Crescenzo E, Morganti AG, Hrelia P, De Iaco P, Angelini S and Perrone AM: Emerging Role of MicroRNAs in the therapeutic response in cervical cancer: A systematic review. Front Oncol. 12:8479742022. View Article : Google Scholar : PubMed/NCBI | |
Liu C and Wang R: The roles of hedgehog signaling pathway in radioresistance of cervical cancer. Dose Response. 17:15593258198852932019. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Guo C, Zheng W, Wang Q and Zhou L: Exosome-Mediated Transfer of miR-1323 from Cancer-Associated Fibroblasts Confers Radioresistance of C33A Cells by Targeting PABPN1 and Activating Wnt/β-Catenin signaling pathway in cervical cancer. Reprod Sci. 29:1809–1821. 2022. View Article : Google Scholar : PubMed/NCBI | |
Che Y, Li Y, Zheng F, Zou K, Li Z, Chen M, Hu S, Tian C, Yu W, Guo W, et al: TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling. Cancer Lett. 452:1–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Liu S, Sheng J and Cui M: Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer. PeerJ. 8:e92342020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Feng Y, Zhang G and Xu Y: The endonuclease APE1 processes miR-92b formation, thereby regulating expression of the tumor suppressor LDLR in cervical cancer cells. Ther Adv Med Oncol. 11:17588359198558592019. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Guo L, Cao Y, Li S, Li J and Liu M: MicroRNA-7-5p Promotes Cisplatin Resistance of Cervical Cancer Cells and Modulation of Cellular Energy Homeostasis by Regulating the Expression of the PARP-1 and BCL2 Genes. Med Sci Monit. 24:6506–6516. 2018. View Article : Google Scholar : PubMed/NCBI | |
St Laurent G, Wahlestedt C and Kapranov P: The Landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo F, Wen Y, Zhou H and Li Z: Roles of long non-coding RNAs in cervical cancer. Life Sci. 256:1179812020. View Article : Google Scholar : PubMed/NCBI | |
Chandra Gupta S and Nandan Tripathi Y: Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 140:1955–1967. 2017. View Article : Google Scholar | |
Zhang P, Wu W, Chen Q and Chen M: Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 16:201900272019. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Wu Q, Liu Y, Wang X, Ma C and Zhu W: LncRNA HOTAIR promotes chemoresistance by facilitating epithelial to mesenchymal transition through miR-29b/PTEN/PI3K signaling in cervical cancer. Cells Tissues Organs. 211:16–29. 2022. View Article : Google Scholar | |
Zhou Y, Wang Y, Lin M, Wu D and Zhao M: LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int. 21:4002021. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Liu L, Wang J and Liu W: The role of long noncoding RNAs in therapeutic resistance in cervical cancer. Front Cell Dev Biol. 10:10609092022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Fang C, Feng Z, Xia T, Lu L, Luo M, Chen Y, Liu Y and Li Y: The Role of LncRNAs in the regulation of radiotherapy sensitivity in cervical cancer. Front Oncol. 12:8968402022. View Article : Google Scholar : PubMed/NCBI | |
Li N, Meng DD, Gao L, Xu Y, Liu PJ, Tian YW, Yi ZY, Zhang Y, Tie XJ and Xu ZQ: Overexpression of HOTAIR leads to radioresistance of human cervical cancer via promoting HIF-1α expression. Radiat Oncol. 13:2102018. View Article : Google Scholar | |
Liu S, Zhang M and Qu P: Expression level and clinical significance of HOX transcript antisense intergenic RNA in cervical cancer: A meta-analysis. Sci Rep. 6:380472016. View Article : Google Scholar : PubMed/NCBI | |
Lu H, He Y, Lin L, Qi Z, Ma L, Li L and Su Y: Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumour Biol. 37:1683–1691. 2016. View Article : Google Scholar | |
Gao J, Liu L, Li G, Cai M, Tan C, Han X and Han L: LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol. 126:994–1001. 2019. View Article : Google Scholar | |
Fang X, Zhong G, Wang Y, Lin Z, Lin R and Yao T: Low GAS5 expression may predict poor survival and cisplatin resistance in cervical cancer. Cell Death Dis. 11:5312020. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Gu Y, Li D, Jiang M, Zhao S, Li Z and Liu S: Knockdown of lncRNA PCAT1 Enhances Radiosensitivity of Cervical Cancer by Regulating miR-128/GOLM1 Axis. Onco Targets Ther. 13:10373–10385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Belousova EA, Filipenko ML and Kushlinskii NE: Circular RNA: New regulatory molecules. Bull Exp Biol Med. 164:803–815. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guttman M, Russell P, Ingolia NT, Weissman JS and Lander ES: Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 154:240–251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li LJ, Leng RX, Fan YG, Pan HF and Ye DQ: Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res. 361:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Nazarali AJ and Ji S: Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am J Cancer Res. 6:1167–1176. 2016.PubMed/NCBI | |
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI | |
Zhou SY, Chen W, Yang SJ, Xu ZH, Hu JH, Zhang HD, Zhong SL and Tang JH: The emerging role of circular RNAs in breast cancer. Biosci Rep. 39:BSR201906212019. View Article : Google Scholar : PubMed/NCBI | |
Ruan H, Xiang Y, Ko J, Li S, Jing Y, Zhu X, Ye Y, Zhang Z, Mills T, Feng J, et al: Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med. 11:552019. View Article : Google Scholar | |
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I and Yarden Y: Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44:1370–1383. 2016. View Article : Google Scholar : | |
Han B, Chao J and Yao H: Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 187:31–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hussen BM, Honarmand Tamizkar K, Hidayat HJ, Taheri M and Ghafouri-Fard S: The role of circular RNAs in the development of hepatocellular carcinoma. Pathol Res Pract. 223:1534952021. View Article : Google Scholar : PubMed/NCBI | |
Pan G, Mao A, Liu J, Lu J, Ding J and Liu W: Circular RNA hsa_circ_0061825 (circ-TFF1) contributes to breast cancer progression through targeting miR-326/TFF1 signalling. Cell Prolif. 53:e127202020. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Li Z, He Z, Wang W, Wang S, Zhang X, Cao J, Xu P, Wang H, Huang X, et al: Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J Exp Clin Cancer Res. 39:2462020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, Andrews R, Zhong W, Zhang X, Song E and Gong C: Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 10:552019. View Article : Google Scholar : PubMed/NCBI | |
Luo YH, Yang YP, Chien CS, Yarmishyn AA, Ishola AA, Chien Y, Chen YM, Huang TW, Lee KY, Huang WC, et al: Plasma Level of Circular RNA hsa_circ_0000190 Correlates with tumor progression and poor treatment response in advanced lung cancers. Cancers (Basel). 12:17402020. View Article : Google Scholar : PubMed/NCBI | |
Diallo LH, Tatin F, David F, Godet AC, Zamora A, Prats AC, Garmy-Susini B and Lacazette E: How are circRNAs translated by non-canonical initiation mechanisms? Biochimie. 164:45–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X and Zheng X: Hsa_circ_0001495 contributes to cervical cancer progression by targeting miR-526b-3p/TMBIM6/mTOR axis. Reprod Biol. 22:1006482022. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Wang J and Wang B: Circular RNA Circ_0003221 promotes cervical cancer progression by regulating miR-758-3p/CPEB4 Axis. Cancer Manag Res. 13:5337–5350. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji F, Du R, Chen T, Zhang M, Zhu Y, Luo X and Ding Y: Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids. 19:413–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang YM, Huang LM, Li DR, Shao JH, Xiong SL, Wang CM and Lu SM: Hsa_circ_0101996 combined with hsa_circ_0101119 in peripheral whole blood can serve as the potential biomarkers for human cervical squamous cell carcinoma. Int J Clin Exp Pathol. 10:11924–11931. 2017.PubMed/NCBI | |
Li N, Liu J and Deng X: Identification of a novel circRNA, hsa_circ_0065898, that regulates tumor growth in cervical squamous cell carcinoma. Transl Cancer Res. 10:47–56. 2021. View Article : Google Scholar | |
Zhang X, Yang S, Chen W, Dong X, Zhang R, Ye H, Ye H, Mei X, Liu H, Fang Y and He C: Circular RNA circYPEL2: A novel biomarker in cervical cancer. Genes (Basel). 13:382021. View Article : Google Scholar | |
Wu P, Qin J, Liu L, Tan W, Lei L and Zhu J: circEPSTI1 promotes tumor progression and cisplatin resistance via upregulating MSH2 in cervical cancer. Aging (Albany NY). 14:5406–5416. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Lan Y, Chi Y, Yang B and Ren C: Downregulation of Circ-CEP128 enhances the paclitaxel sensitivity of cervical cancer through regulating miR-432-5p/MCL1. Biochem Genet. 60:2346–2363. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Li P, Xie Y, Wang Z and Wang R: CircMYBL2 regulates the resistance of cervical cancer cells to paclitaxel via miR -665-dependent regulation of EGFR. Drug Dev Res. 82:1193–1205. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Dong W, Luo G, Xie J, Liu J and Yu F: Silencing of hsa_circ_0009035 suppresses cervical cancer progression and enhances radiosensitivity through MicroRNA 889-3p-Dependent regulation of HOXB7. Mol Cell Biol. 41:e00631202021. View Article : Google Scholar : PubMed/NCBI | |
Cho O, Chun M, Oh YT, Noh OK, Chang SJ, Ryu HS and Lee EJ: Prognostic implication of simultaneous anemia and lymphopenia during concurrent chemoradiotherapy in cervical squamous cell carcinoma. Tumour Biol. 39:10104283177331442017. View Article : Google Scholar : PubMed/NCBI | |
Leetanaporn K and Hanprasertpong J: Predictive value of the hemoglobin-albumin-lymphocyte-platelet (HALP) index on the oncological outcomes of locally advanced cervical cancer patients. Cancer Manag Res. 14:1961–1972. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Zeng M, Wang X, Guo C, Yue P, Zhang X, Lou H, Chen J, Mu D, Kong D, et al: Synthetic lethality between TP53 and ENDOD1. Nat Commun. 13:28612022. View Article : Google Scholar : PubMed/NCBI | |
Lyu J, Yang EJ, Zhang B, Wu C, Pardeshi L, Shi C, Mou PK, Liu Y, Tan K and Shim JS: Synthetic lethality of RB1 and aurora A is driven by stathmin-mediated disruption of microtubule dynamics. Nat Commun. 11:51052020. View Article : Google Scholar : PubMed/NCBI | |
Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G, Mavrommati I, Pai CC, Zalmas LP, Drobnitzky N, et al: Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell. 28:557–568. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sauerbrei W, Haeussler T, Balmford J and Huebner M: Structured reporting to improve transparency of analyses in prognostic marker studies. BMC Med. 20:1842022. View Article : Google Scholar : PubMed/NCBI |