Obesity and lipid metabolism in the development of osteoporosis (Review)
- Authors:
- Xiaochuan Wang
- Chi Zhang
- Guang Zhao
- Keda Yang
- Lin Tao
-
Affiliations: Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China, Department of Orthopedics, Fourth Hospital of China Medical University, Shenyang, Liaoning 110165, P.R. China - Published online on: May 27, 2024 https://doi.org/10.3892/ijmm.2024.5385
- Article Number: 61
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P and Milat F: Secondary osteoporosis. Endocr Rev. 43:240–313. 2022. View Article : Google Scholar | |
Flores LE, Nelson S, Waltman N, Kupzyk K, Lappe J, Mack L and Bilek LD: Examining effects of habitual physical activity and body composition on bone structure in early post-menopausal women: A pQCT analysis. Osteoporos Int. 33:425–433. 2022. View Article : Google Scholar | |
Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, McCloskey EV, Reid DM, Selby P and Wilkins M; National Osteoporosis Guideline Group (NOGG): Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 62:105–108. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mirza F and Canalis E: Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur J Endocrinol. 173:R131–R151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY and Yu SN: A network meta-analysis on the short-term efficacy and adverse events of different anti-osteoporosis drugs for the treatment of postmenopausal osteoporosis. J Cell Biochem. 119:4469–4481. 2018. View Article : Google Scholar | |
Ying S, Sifan W, Yujiao W, Rongyi C, Qingrong H, Lili M, Huiyong C and Lindi J: The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 53:402020. View Article : Google Scholar | |
Feng K, Yu M, Lou X, Wang D, Wang L and Ren W: Multi-omics analysis of bone marrow mesenchymal stem cell differentiation differences in osteoporosis. Genomics. 115:1106682023. View Article : Google Scholar : PubMed/NCBI | |
Gritsaenko T, Pierrefite-Carle V, Creff G, Simoneau B, Hagège A, Farlay D, Pagnotta S, Orange F, Jaurand X, Auwer CD, et al: Low doses of uranium and osteoclastic bone resorption: Key reciprocal effects evidenced using new in vitro biomimetic models of bone matrix. Arch Toxicol. 95:1023–1037. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chung HJ, Cho L, Shin JS, Lee J, Ha IH, Park HJ and Lee SK: Effects of JSOG-6 on protection against bone loss in ovariectomized mice through regulation of osteoblast differentiation and osteoclast formation. BMC Complement Altern Med. 14:1842014. View Article : Google Scholar : PubMed/NCBI | |
Dey D, Jingar P, Agrawal S, Shrivastava V, Bhattacharya A, Manhas J, Garg B, Ansari MT, Mridha AR, Sreenivas V, et al: Symphytum officinale augments osteogenesis in human bone marrow-derived mesenchymal stem cells in vitro as they differentiate into osteoblasts. J Ethnopharmacol. 248:1123292020. View Article : Google Scholar | |
Zhang L, Yuan Y, Wu W, Sun Z, Lei L, Fan J, Gao B and Zou J: Medium-intensity treadmill exercise exerts beneficial effects on bone modeling through bone marrow mesenchymal stromal cells. Front Cell Dev Biol. 8:6006392020. View Article : Google Scholar : PubMed/NCBI | |
Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, Sun C, Li B, Wang Z, Lan W, et al: BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 10:302019. View Article : Google Scholar | |
Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, Zhao X and Liu K: Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 38:5161–5168. 2011. View Article : Google Scholar | |
Chedraui P, Miguel GS, Vintimilla-Sigüenza I, Villacreses D, Romero-Huete L, Domínguez A, Jaramillo W, Escobar GS, Pérez-López FR, Genazzani AR, et al: The metabolic syndrome and its components in postmenopausal women. Gynecol Endocrinol. 29:563–568. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hur HJ, Jeong YH, Lee SH and Sung MJ: Quercitrin ameliorates hyperlipidemia and hepatic steatosis in ovariectomized mice. Life (Basel). 10:2432020.PubMed/NCBI | |
Chen L, Liu Y, Tang Z, Shi X, Song Z, Cao F, Wei P, Li M, Li X, Jiang D, et al: Improvements in estrogen deficiency-induced hypercholesterolemia by Hypericum perforatum L. extract are associated with gut microbiota and related metabolites in ovariectomized (OVX) rats. Biomed Pharmacother. 135:1111312021. View Article : Google Scholar : PubMed/NCBI | |
Mutlu AS, Duffy J and Wang MC: Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 56:1394–1407. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miró O, Casademont J, Casals E, Perea M, Urbano-Márquez A, Rustin P and Cardellach F: Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain enzyme defects. Cardiovasc Res. 47:624–631. 2000. View Article : Google Scholar : PubMed/NCBI | |
van de Wiel A: Diabetes mellitus and alcohol. Diabetes Metab Res Rev. 20:263–267. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maggio CA and Pi-Sunyer FX: Obesity and type 2 diabetes. Endocrinol Metab Clin North Am. 32:805–822. 2003. View Article : Google Scholar | |
Comuzzie AG, Tejero ME, Funahashi T, Martin LJ, Kissebah A, Takahashi M, Kihara S, Tanaka S, Rainwater DL, Matsuzawa Y, et al: The genes influencing adiponectin levels also influence risk factors for metabolic syndrome and type 2 diabetes. Hum Biol. 79:191–200. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Huo J, Ding X, Yang M, Li L, Dai J, Hosoe K, Kubo H, Mori M, Higuchi K and Sawashita J: Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-Mediated PDE4 inhibition. Sci Rep. 7:82532017. View Article : Google Scholar : PubMed/NCBI | |
Fassio A, Idolazzi L, Rossini M, Gatti D, Adami G, Giollo A and Viapiana O: The obesity paradox and osteoporosis. Eat Weight Disord. 23:293–302. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ali D, Tencerova M, Figeac F, Kassem M and Jafari A: The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne). 13:9814872022. View Article : Google Scholar : PubMed/NCBI | |
Lopes KG, Rodrigues EL, da Silva Lopes MR, do Nascimento VA, Pott A, Guimarães RCA, Pegolo GE and Freitas KC: Adiposity metabolic consequences for adolescent bone health. Nutrients. 14:32602022. View Article : Google Scholar : PubMed/NCBI | |
Salzmann SN, Ortiz Miller C, Carrino JA, Yang J, Shue J, Sama AA, Cammisa FP, Girardi FP and Hughes AP: BMI and gender increase risk of sacral fractures after multilevel instrumented spinal fusion compared with bone mineral density and pelvic parameters. Spine J. 19:238–245. 2019. View Article : Google Scholar | |
Perna S, Gasparri C, Allehdan S, Riva A, Petrangolini G, Ferraris C, Guido D, Alalwan TA and Rondanelli M: Discovering the Physio-pathological mechanisms of interaction between bone mineral density, muscle mass, and visceral adipose tissue in female older adults through structural equation modeling. J Clin Med. 12:22692023. View Article : Google Scholar : PubMed/NCBI | |
Tao J, Zhang Y, Tan C and Tan W: Associations between weight-adjusted waist index and fractures: A population-based study. J Orthop Surg Res. 18:2902023. View Article : Google Scholar : PubMed/NCBI | |
Piñar-Gutierrez A, García-Fontana C, García-Fontana B and Muñoz-Torres M: Obesity and bone health: A complex relationship. Int J Mol Sci. 23:83032022. View Article : Google Scholar : PubMed/NCBI | |
Aaseth JO and Alexander J: Postoperative osteoporosis in subjects with morbid obesity undergoing bariatric surgery with gastric bypass or sleeve gastrectomy. Nutrients. 15:13022023. View Article : Google Scholar : PubMed/NCBI | |
Albaik M, Khan JA, Sindi I, Akesson KE and McGuigan FEA: Bone mass in Saudi women aged 20-40 years: The association with obesity and vitamin D deficiency. Arch Osteoporos. 17:1232022. View Article : Google Scholar | |
Di Filippo L, De Lorenzo R, Giustina A, Rovere-Querini P and Conte C: Vitamin d in osteosarcopenic obesity. Nutrients. 14:18162022. View Article : Google Scholar : PubMed/NCBI | |
Bassatne A, Chakhtoura M, Saad R and Fuleihan GE: Vitamin D supplementation in obesity and during weight loss: A review of randomized controlled trials. Metabolism. 92:193–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bosetti M, Sabbatini M, Calarco A, Borrone A, Peluso G and Cannas M: Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging. J Bone Miner Metab. 34:65–78. 2016. View Article : Google Scholar | |
Wang C, Tian W, Hu SY, Di CX, He CY, Cao QL, Hao RH, Dong SS, Liu CC, Rong Y, et al: Lineage-selective super enhancers mediate core regulatory circuitry during adipogenic and osteogenic differentiation of human mesenchymal stem cells. Cell Death Dis. 13:8662022. View Article : Google Scholar : PubMed/NCBI | |
Hao RH, Guo Y, Wang C, Chen F, Di CX, Dong SS, Cao QL, Guo J, Rong Y, Yao S, et al: Lineage-specific rearrangement of chromatin loops and epigenomic features during adipocytes and osteoblasts commitment. Cell Death Differ. 29:2503–2518. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P and Xiao J: PPARγ and wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 11:216–225. 2016. View Article : Google Scholar | |
Yao XT, Li PP, Liu J, Yang YY, Luo ZL, Jiang HT, He WG, Luo HH, Deng YX and He BC: Wnt/β-Catenin promotes the osteoblastic potential of BMP9 through Down-Regulating Cyp26b1 in mesenchymal stem cells. Tissue Eng Regen Med. 20:705–723. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao Y, Xie Z, Li M, Liu Y and Tu X: Activating Wnt/β-Catenin signaling in osteocytes promotes osteogenic differentiation of BMSCs through BMP-7. Int J Mol Sci. 23:160452022. View Article : Google Scholar | |
Vallée A and Lecarpentier Y: Crosstalk between peroxisome Proliferator-Activated receptor gamma and the canonical WNT/β-Catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 9:7452018. View Article : Google Scholar | |
Kang P, Wu Z, Huang Y, Luo Z, Huo S and Chen Q: Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating H3K9me2 on RUNX2. PeerJ. 10:e138622022. View Article : Google Scholar : PubMed/NCBI | |
Gómez R, Barter MJ, Alonso-Pérez A, Skelton AJ, Proctor C, Herrero-Beaumont G and Young DA: DNA methylation analysis identifies key transcription factors involved in mesenchymal stem cell osteogenic differentiation. Biol Res. 56:92023. View Article : Google Scholar : PubMed/NCBI | |
Takada I, Kouzmenko AP and Kato S: Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 5:442–447. 2009. View Article : Google Scholar : PubMed/NCBI | |
Takada I, Suzawa M, Matsumoto K and Kato S: Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci. 1116:182–195. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barakat B and Almeida MEF: Biochemical and immunological changes in obesity. Arch Biochem Biophys. 708:1089512021. View Article : Google Scholar : PubMed/NCBI | |
Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P and Ranneh Y: Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology. 23:79–89. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ and Ren J: ER stress and inflammation crosstalk in obesity. Med Res Rev. 43:5–30. 2023. View Article : Google Scholar | |
Sardi C, Martini E, Mello T, Camelliti S, Sfondrini L, Marcucci F, Kallikourdis M, Sommariva M and Rumio C: Effect of acetylsalicylic acid on inflamed adipose tissue. Insulin resistance and hepatic steatosis in a mouse model of diet-induced obesity. Life Sci. 264:1186182021. View Article : Google Scholar | |
Zhou X, Pak S, Li D, Dong L, Chen F, Hu X and Ma L: Bamboo shoots modulate gut microbiota, eliminate obesity in high-fat-diet-fed mice and improve lipid metabolism. Foods. 12:13802023. View Article : Google Scholar : PubMed/NCBI | |
He H, Zhang Y, Sun Y, Zhang Y, Xu J, Yang Y and Chen J: Folic acid attenuates high-fat diet-induced osteoporosis through the AMPK signaling pathway. Front Cell Dev Biol. 9:7918802021. View Article : Google Scholar | |
Kang YS, Kim JC, Kim JS and Kim SH: Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of High-Fat Diet-Induced osteoporosis. J Sports Sci Med. 18:596–603. 2019.PubMed/NCBI | |
Walsh MC, Kim GK, Maurizio PL, Molnar EE and Choi Y: TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One. 3:e40642008. View Article : Google Scholar : PubMed/NCBI | |
Wu WJ, Xia CL, Ou SJ, Yang Y, Ma YF, Hou YL, Yang QP, Zhang J, Li JW, Qi Y and Xu CP: Novel elongator protein 2 inhibitors mitigating tumor necrosis Factor-α induced osteogenic differentiation inhibition. Biomed Res Int. 2021:36645642021. View Article : Google Scholar | |
Yao Z, Getting SJ and Locke IC: Regulation of TNF-induced osteoclast differentiation. Cells. 11:1322021. View Article : Google Scholar | |
Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME, Morris RJ, Cleary MP and Li B: Epidermal Fatty Acid binding protein promotes skin inflammation induced by high-fat diet. Immunity. 42:953–964. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gkouveris I, Soundia A, Gouveris P, Zouki D, Hadaya D and Tetradis S: Macrophage involvement in Medication-related osteonecrosis of the jaw (MRONJ): A comprehensive, short review. Cancers (Basel). 14:3302022. View Article : Google Scholar : PubMed/NCBI | |
Russo R, Zito F and Lampiasi N: MiRNAs expression profiling in Raw264.7 macrophages after Nfatc1-Knockdown elucidates potential pathways involved in osteoclasts differentiation. Biology (Basel). 10:10802021.PubMed/NCBI | |
Korkmaz HA and Özkan B: Impact of obesity on bone metabolism in Children. J Pediatr Endocrinol Metab. 35:557–565. 2022. View Article : Google Scholar : PubMed/NCBI | |
Leanza G, Conte C, Cannata F, Isgrò C, Piccoli A, Strollo R, Quattrocchi CC, Papalia R, Denaro V, Maccarrone M, et al: Oxidative stress in postmenopausal women with or without obesity. Cells. 12:11372023. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez-Solis AL, Garrido-Dzib AG, Rochel-Pérez A, Magallón-Zertuche V, Chávez-Loría G, Medina-Vera I and Avila-Nava A: Oxidative stress biomarkers in mexican subjects with overweight and obesity: A systematic review. Metab Syndr Relat Disord. 21:188–196. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cojocaru K, Cojocaru KA, Luchian I, Ursu RG, Butnaru O and Foia L: Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants (Basel). 12:6582023. View Article : Google Scholar : PubMed/NCBI | |
Jing J, Peng Y, Fan W, Han S, Peng Q, Xue C, Qin X, Liu Y and Ding Z: Obesity-induced oxidative stress and mitochondrial dysfunction negatively affect sperm quality. FEBS Open Bio. 13:763–778. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lubkowska A, Dudzińska W and Pluta W: Antioxidant enzyme activity and serum HSP70 concentrations in relation to insulin resistance and lipid profile in lean and overweight young men. Antioxidants (Basel). 12:6552023. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Zhu R, Zhang H, Chen B, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, et al: Lycopene improves bone quality and regulates AGE/RAGE/NF-кB signaling pathway in high-fat diet-induced obese mice. Oxid Med Cell Longev. 2022:36970672022. View Article : Google Scholar | |
Wang YN, Jia TT, Feng Y, Liu SY, Zhang WJ, Zhang DJ and Xu X: Hyperlipidemia impairs osseointegration via the ROS/Wnt/β-Catenin pathway. J Dent Res. 100:658–665. 2021. View Article : Google Scholar : PubMed/NCBI | |
You L, Sheng ZY, Tang CL, Chen L, Pan L and Chen JY: High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol Sin. 32:1498–1504. 2011. View Article : Google Scholar : PubMed/NCBI | |
Almeida M, Ambrogini E, Han L, Manolagas SC and Jilka RL: Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 284:27438–27448. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ronis MJ, Mercer K and Chen JR: Effects of nutrition and alcohol consumption on bone loss. Curr Osteoporos Rep. 9:53–59. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Cui J, Li YX, Shi YH, Wang B, Le GW and Wang ZP: Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity. Nutrition. 27:214–220. 2011. View Article : Google Scholar | |
Li G, Park JN, Park HJ, Suh H and Choi HS: High Cholesterol-Induced bone loss is attenuated by arctiin via an action in osteoclasts. Nutrients. 14:44832022. View Article : Google Scholar : PubMed/NCBI | |
Kan B, Zhao Q, Wang L, Xue S, Cai H and Yang S: Association between lipid biomarkers and osteoporosis: A cross-sectional study. BMC Musculoskelet Disord. 22:7592021. View Article : Google Scholar : PubMed/NCBI | |
Lu CW, Wang CH, Hsu BG and Tsai JP: Serum osteoprotegerin level is negatively associated with bone mineral density in patients undergoing maintenance hemodialysis. Medicina (Kaunas). 57:7622021. View Article : Google Scholar : PubMed/NCBI | |
Martini C, Sosa FN, Malvicini R, Pacienza N, Yannarelli G, Del C and Vila M: Alendronate inhibits triglyceride accumulation and oxidative stress in adipocytes and the inflammatory response of macrophages which are associated with adipose tissue dysfunction. J Physiol Biochem. 77:601–611. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mao H, Wang W, Shi L, Chen C, Han C, Zhao J, Zhuo Q, Shen S, Li Y and Huo J: Metabolomics and physiological analysis of the effect of calcium supplements on reducing bone loss in ovariectomized rats by increasing estradiol levels. Nutr Metab (Lond). 18:762021. View Article : Google Scholar : PubMed/NCBI | |
Sutjarit N, Thongon N, Weerachayaphorn J, Piyachaturawat P, Suksamrarn A, Suksen K, Papachristou DJ and Blair HC: Inhibition of adipogenic differentiation of human bone Marrow-Derived mesenchymal stem cells by a phytoestrogen diarylheptanoid from curcuma comosa. J Agric Food Chem. 68:9993–10002. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Luo L and Liu Z, Li Y, Tong Z and Liu Z: Role of TNF-α and FGF-2 in the fracture healing disorder of type 2 diabetes model induced by high fat diet followed by streptozotocin. Diabetes Metab Syndr Obes. 13:2279–2288. 2020. View Article : Google Scholar : | |
Zhang T, Tian Y, Wang Q, Fu M, Xue C and Wang J: Comparative study of DHA with different molecular forms for ameliorating osteoporosis by promoting Chondrocyte-to-Osteoblast transdifferentiation in the growth plate of ovariectomized mice. J Agric Food Chem. 69:10562–10571. 2021. View Article : Google Scholar : PubMed/NCBI | |
Antonenko A, Leahy A, Babenko M and Lyons D: Low dose hydrophilic statins are the preferred agents for females at risk of osteoporosis. Bone Rep. 16:1011522022. View Article : Google Scholar | |
Liu J, Deng X, Liang X and Li L: The phytoestrogen glabrene prevents osteoporosis in ovariectomized rats through upregulation of the canonical Wnt/β-catenin signaling pathway. J Biochem Mol Toxicol. 35:e226532021. View Article : Google Scholar | |
Zhou Y, Deng T, Zhang H, Guan Q, Zhao H, Yu C, Shao S, Zhao M and Xu J: Hypercholesterolaemia increases the risk of high-turnover osteoporosis in men. Mol Med Rep. 19:4603–4612. 2019.PubMed/NCBI | |
Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA and Reszka AA: Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 11(Suppl 1): S108–S118. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dumitru N, Carsote M, Cocolos A, Petrova E, Olaru M, Dumitrache C and Ghemigian A: The link between bone osteocalcin and energy metabolism in a group of postmenopausal women. Curr Health Sci J. 45:47–51. 2019.PubMed/NCBI | |
Papachristou NI, Blair HC, Kypreos KE and Papachristou DJ: High-density lipoprotein (HDL) metabolism and bone mass. J Endocrinol. 233:R95–R107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Wang S, Yi Q, Xia Y and Geng B: High-density lipoprotein cholesterol is negatively correlated with bone mineral density and has potential predictive value for bone loss. Lipids Health Dis. 20:752021. View Article : Google Scholar : PubMed/NCBI | |
Barsh GS and Schwartz MW: Genetic approaches to studying energy balance: Perception and integration. Nat Rev Genet. 3:589–600. 2002. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dawodu D, Patecki M, Dumler I, Haller H and Kiyan Y: oxLDL inhibits differentiation of mesenchymal stem cells into osteoblasts via the CD36 mediated suppression of Wnt signaling pathway. Mol Biol Rep. 46:3487–3496. 2019. View Article : Google Scholar : PubMed/NCBI | |
Okayasu M, Nakayachi M, Hayashida C, Ito J, Kaneda T, Masuhara M, Suda N, Sato T and Hakeda Y: Low-density lipoprotein receptor deficiency causes impaired osteoclastogenesis and increased bone mass in mice because of defect in osteoclastic cell-cell fusion. J Biol Chem. 287:19229–19241. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hada N, Okayasu M, Ito J, Nakayachi M, Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M, et al: Receptor activator of NF-κB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Bone. 50:226–236. 2012. View Article : Google Scholar | |
Lee KG, Lee GB, Yang JS and Moon MH: Perturbations of lipids and oxidized phospholipids in lipoproteins of patients with postmenopausal osteoporosis evaluated by asymmetrical flow field-flow fractionation and nanoflow UHPLC-ESI-MS/MS. Antioxidants (Basel). 9:462020. View Article : Google Scholar : PubMed/NCBI | |
Leitinger N: The role of phospholipid oxidation products in inflammatory and autoimmune diseases: Evidence from animal models and in humans. Subcell Biochem. 49:325–350. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fallah A, Pierre R, Abed E and Moreau R: Lysophosphatidylcholine-induced cytotoxicity in osteoblast-like MG-63 cells: Involvement of transient receptor potential vanilloid 2 (TRPV2) channels. Mol Membr Biol. 30:315–326. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang MS, Morony S, Lu J, Zhang Z, Bezouglaia O, Tseng W, Tetradis S, Demer LL and Tintut Y: Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J Biol Chem. 282:21237–21243. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chai Y, Li C, Liu H, Su W, Liu X, Yu B, Lei W, Yu B, Crane JL, et al: Oxidized phospholipids are ligands for LRP6. Bone Res. 6:222018. View Article : Google Scholar : PubMed/NCBI | |
Graham LS, Parhami F, Tintut Y, Kitchen CM, Demer LL and Effros RB: Oxidized lipids enhance RANKL production by T lymphocytes: Implications for lipid-induced bone loss. Clin Immunol. 133:265–275. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tseng W, Lu J, Bishop GA, Watson AD, Sage AP, Demer L and Tintut Y: Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res. 51:1010–1016. 2010. View Article : Google Scholar : | |
Palmieri M, Almeida M, Nookaew I, Gomez-Acevedo H, Joseph TE, Que X, Tsimikas S, Sun X, Manolagas SC, Witztum JL and Ambrogini E: Neutralization of oxidized phospholipids attenuates age-associated bone loss in mice. Aging Cell. 20:e134422021. View Article : Google Scholar : PubMed/NCBI | |
Palmieri M, Kim HN, Gomez-Acevedo H, Que X, Tsimikas S, Jilka RL, Manolagas SC, Witztum JL and Ambrogini E: A neutralizing antibody targeting oxidized phospholipids promotes bone anabolism in chow-fed young adult mice. J Bone Miner Res. 36:170–185. 2021. View Article : Google Scholar | |
Ambrogini E, Que X, Wang S, Yamaguchi F, Weinstein RS, Tsimikas S, Manolagas SC, Witztum JL and Jilka RL: Oxidation-specific epitopes restrain bone formation. Nat Commun. 9:21932018. View Article : Google Scholar : PubMed/NCBI | |
Inagaki M: Structure and biological activity of glycosphingolipids from starfish and feather stars. Yakugaku Zasshi. 128:1187–1194. 2008.In Japanese. View Article : Google Scholar : PubMed/NCBI | |
Liang B, Shen X, Lan C, Lin Y, Li C, Zhong S and Yan S: Glycolipid toxicity induces osteogenic dysfunction via the TLR4/S100B pathway. Int Immunopharmacol. 97:1077922021. View Article : Google Scholar : PubMed/NCBI | |
Ran SY, Yu Q, Chen Y and Lin SQ: Prevention of postmenopausal osteoporosis in Chinese women: A 5-year, double-blind, randomized, parallel placebo-controlled study. Climacteric. 20:391–396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu WJ, Zhang Z, Fu WZ, He JW, Wang C and Zhang ZL: Association between LGR4 polymorphisms and peak bone mineral density and body composition. J Bone Miner Metab. 38:658–669. 2020. View Article : Google Scholar : PubMed/NCBI | |
Melgar-Rodríguez S, Cafferata EA, Díaz NI, Peña MA, González-Osuna L, Rojas C, Sierra-Cristancho A, Cárdenas AM, Díaz-Zúñiga J and Vernal R: Natural Killer T (NKT) cells and periodontitis: Potential regulatory role of NKT10 cells. Mediators Inflamm. 2021:55739372021. View Article : Google Scholar : PubMed/NCBI | |
Naruo M, Negishi Y, Okuda T, Katsuyama M, Okazaki K and Morita R: Alcohol consumption induces murine osteoporosis by downregulation of natural killer T-like cell activity. Immun Inflamm Dis. 9:1370–1382. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tilkeridis K, Kiziridis G, Ververidis A, Papoutselis M, Kotsianidis I, Kitsikidou G, Tousiaki NE, Drosos G, Kapetanou A, Rechova KV, et al: Immunoporosis: A new role for invariant natural Killer T (NKT) cells through overexpression of nuclear Factor-κB ligand (RANKL). Med Sci Monit. 25:2151–2158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen J, Yang K, Da W and Zhu Y: Fecal and serum metabolomic signatures and microbial community profiling of postmenopausal osteoporosis mice model. Front Cell Infect Microbiol. 10:5353102020. View Article : Google Scholar : PubMed/NCBI | |
Zhao YX, Song YW, Zhang L, Zheng FJ, Wang XM, Zhuang XH, Wu F and Liu J: Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo). 75:e14862020. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Gaspà S, Guañabens N, Jurado S, Combalia A, Peris P, Monegal A and Parés A: Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int. 40:2767–2775. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahn TK, Kim KT, Joshi HP, Park KH, Kyung JW, Choi UY, Sohn S, Sheen SH, Shin DE, Lee SH and Han IB: Therapeutic potential of tauroursodeoxycholic acid for the treatment of osteoporosis. Int J Mol Sci. 21:42742020. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Gaspà S, Dubreuil M, Guañabens N, Combalia A, Peris P, Monegal A and Parés A: Ursodeoxycholic acid decreases bilirubin-induced osteoblast apoptosis. Eur J Clin Invest. 44:1206–1214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang J, Wang F, Li W, Wu X, Zhao C, Zhao J, Wei H, Wu Z, Qian M, et al: Dual targeting of bile acid Receptor-1 (TGR5) and Farnesoid X Receptor (FXR) prevents estrogen-dependent bone loss in mice. J Bone Miner Res. 34:765–776. 2019. View Article : Google Scholar | |
Wang Q, Wang G, Wang B and Yang H: Activation of TGR5 promotes osteoblastic cell differentiation and mineralization. Biomed Pharmacother. 108:1797–1803. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Gaspà S, Guañabens N, Jurado S, Dubreuil M, Combalia A, Peris P, Monegal A and Parés A: Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene. 725:1441672020. View Article : Google Scholar | |
Ruiz-Gaspà S, Guañabens N, Enjuanes A, Peris P, Martinez-Ferrer A, de Osaba MJ, Gonzalez B, Alvarez L, Monegal A, Combalia A and Parés A: Lithocholic acid downregulates vitamin D effects in human osteoblasts. Eur J Clin Invest. 40:25–34. 2010. View Article : Google Scholar : PubMed/NCBI | |
Medrano-David D, Lopera AM, Londoño ME and Araque-Marín P: Formulation and characterization of a new injectable bone substitute composed PVA/Borax/CaCO3 and demineralized bone matrix. J Funct Biomater. 12:462021. View Article : Google Scholar | |
Deng D, Pan C, Wu Z, Sun Y, Liu C, Xiang H, Yin P and Shang D: An integrated metabolomic study of osteoporosis: Discovery and quantification of hyocholic acids as candidate markers. Front Pharmacol. 12:7253412021. View Article : Google Scholar : PubMed/NCBI | |
Naito C, Katsumi H, Yoneto K, Omura M, Nishidono M, Kamei S, Mizoguchi A, Tamba A, Tanaka A, Morishita M and Yamamoto A: Development of a phosphoric Acid-Mediated hyaluronic acid gel sheet for efficient transdermal delivery of alendronate for Anti-osteoporotic therapy. Pharmaceutics. 11:6422019. View Article : Google Scholar | |
Asefy Z, Tanomand A, Hoseinnejhad S, Ceferov Z, Oshaghi EA and Rashidi M: Unsaturated fatty acids as a co-therapeutic agents in cancer treatment. Mol Biol Rep. 48:2909–2916. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiao WJ, Ke YH, He JW, Zhang H, Yu JB, Hu WW, Gu JM, Gao G, Yue H, Wang C, et al: Polymorphisms in the human ALOX12 and ALOX15 genes are associated with peak bone mineral density in Chinese nuclear families. Osteoporos Int. 23:1889–1897. 2012. View Article : Google Scholar | |
Wu Y, Zhang M, Chen X, Zhou Y and Chen Z: Metabolomic analysis to elucidate the change of the n-3 polyunsaturated fatty acids in senescent osteoblasts. Biosci Biotechnol Biochem. 85:611–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saito A, Yoshimura K, Miyamoto Y, Kaneko K, Chikazu D, Yamamoto M and Kamijo R: Enhanced and suppressed mineralization by acetoacetate and β-hydroxybutyrate in osteoblast cultures. Biochem Biophys Res Commun. 473:537–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Board M, Lopez C, van den Bos C, Callaghan R, Clarke K and Carr C: Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species. Int J Biochem Cell Biol. 88:75–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Liu J, Wu P, Gong Y, Xu X and Li W: The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. J Cell Physiol. 235:328–338. 2020. View Article : Google Scholar | |
Li L, Wang XQ, Liu XT, Guo R and Zhang RD: Integrative analysis reveals key mRNAs and lncRNAs in monocytes of osteoporotic patients. Math Biosci Eng. 16:5947–5971. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R and Gautvik KM: Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone. 46:604–612. 2010. View Article : Google Scholar | |
Kang YJ, Yoo JI and Baek KW: Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat. 29:10–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen K, Chen X, Kourkoumelis N, Li G, Wang B and Zhu C: Integrative analysis of genomics and transcriptome data to identify regulation networks in female osteoporosis. Front Genet. 11:6000972020. View Article : Google Scholar : PubMed/NCBI | |
Shen LF, Chen YJ, Liu KM, Haddad ANS, Song IW, Roan HY, Chen LY, Yen JJY, Chen YJ, Wu JY and Chen YT: Role of S-Palmitoylation by ZDHHC13 in mitochondrial function and metabolism in liver. Sci Rep. 7:21822017. View Article : Google Scholar : PubMed/NCBI | |
Andersson T, Söderström I, Simonyté K and Olsson T: Estrogen reduces 11beta-hydroxysteroid dehydrogenase type 1 in liver and visceral, but not subcutaneous, adipose tissue in rats. Obesity (Silver Spring). 18:470–475. 2010. View Article : Google Scholar | |
Yamatani H, Takahashi K, Yoshida T, Soga T and Kurachi H: Differences in the fatty acid metabolism of visceral adipose tissue in postmenopausal women. Menopause. 21:170–176. 2014. View Article : Google Scholar | |
Mahboobifard F, Pourgholami MH, Jorjani M, Dargahi L, Amiri M, Sadeghi S and Tehrani FR: Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother. 156:1138082022. View Article : Google Scholar : PubMed/NCBI | |
Yepuru M, Eswaraka J, Kearbey JD, Barrett CM, Raghow S, Veverka KA, Miller DD, Dalton JT and Narayanan R: Estrogen receptor-{beta}-selective ligands alleviate high-fat diet- and ovariectomy-induced obesity in mice. J Biol Chem. 285:31292–31303. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bjune JI, Strømland PP, Jersin R, Mellgren G and Dankel SN: Metabolic and epigenetic regulation by estrogen in adipocytes. Front Endocrinol (Lausanne). 13:8287802022. View Article : Google Scholar : PubMed/NCBI | |
Ko SH and Jung Y: Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients. 13:45562021. View Article : Google Scholar : PubMed/NCBI | |
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Faergeman N, Rauch A, Tencerova M and Kassem M: High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell. 21:e137262022. View Article : Google Scholar : PubMed/NCBI | |
Liu HF, Meng DF, Yu P, De JC and Li HY: Obesity and risk of fracture in postmenopausal women: A meta-analysis of cohort studies. Ann Med. 55:22035152023. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Kim JH, Jeon YK, Lee JS, Kim K, Hwang SK, Kim JH, Goh TS and Kim YH: Effect of adipokine and ghrelin levels on BMD and fracture risk: An updated systematic review and meta-analysis. Front Endocrinol (Lausanne). 14:10440392023. View Article : Google Scholar : PubMed/NCBI | |
Sardar A, Gautam S, Sinha S, Rai D, Tripathi AK, Dhaniya G, Mishra PR and Trivedi R: Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci. 309:1210202022. View Article : Google Scholar | |
López-Gómez JJ, Pérez-Castrillón JL, García de Santos I, Pérez-Alonso M, Izaola-Jauregui O, Primo-Martín D and De Luis-Román DA: Influence of obesity on bone turnover markers and fracture risk in postmenopausal women. Nutrients. 14:16172022. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Ning H, Wang M, Zhao W, Jing Y, Liu X, Zu J, Kong P, Wang X, Sun C and Yan J: Downregulated fat mass and obesity-associated protein inhibits bone resorption and osteoclastogenesis by nuclear factor-kappa B inactivation. Cell Signal. 87:1101372021. View Article : Google Scholar : PubMed/NCBI | |
Wawrzyniak N, Suliburska J, Kulczyński B, Kołodziejski P, Kurzawa P and Gramza-Michałowska A: Calcium-Enriched pumpkin affects serum leptin levels and fat content in a rat model of postmenopausal osteoporosis. Nutrients. 13:23342021. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Zhang Z, Hu W and Yang Y: The correlation of triglyceride/high-density lipoprotein cholesterol ratio with muscle mass in type 2 diabetes patients. BMC Endocr Disord. 23:932023. View Article : Google Scholar : PubMed/NCBI | |
Kalhan SC, Bugianesi E, McCullough AJ, Hanson RW and Kelley DE: Estimates of hepatic glyceroneogenesis in type 2 diabetes mellitus in humans. Metabolism. 57:305–312. 2008. View Article : Google Scholar : PubMed/NCBI | |
Niu YG and Evans RD: Myocardial metabolism of triacylglycerol-rich lipoproteins in type 2 diabetes. J Physiol. 587:3301–3315. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa M, Iwasaki Y, Yatoh S, Kato T, Kumadaki S, Inoue N, Yamamoto T, Matsuzaka T, Nakagawa Y, Yahagi N, et al: Cholesterol accumulation and diabetes in pancreatic beta-cell-specific SREBP-2 transgenic mice: A new model for lipotoxicity. J Lipid Res. 49:2524–2534. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Xu H, Zhang H, Li Y, Chen S, He D, Yang G, Ban B, Zhang M and Liu F: Serum triglyceride glucose index is a valuable predictor for visceral obesity in patients with type 2 diabetes: A cross-sectional study. Cardiovasc Diabetol. 22:982023. View Article : Google Scholar : PubMed/NCBI | |
Gavin KM, Sullivan TM, Maltzahn JK, Jackman MR, Libby AE, MacLean PS, Kohrt WM, Majka SM and Klemm DJ: Hematopoietic stem Cell-Derived adipocytes modulate adipose tissue cellularity, leptin production and insulin responsiveness in female mice. Front Endocrinol (Lausanne). 13:8448772022. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhao GH, Zhang YK, Shen GS, Xu YJ and Xu NW: Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci. 21:3900–3905. 2017.PubMed/NCBI | |
Figeac F, Tencerova M, Ali D, Andersen TL, Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A and Kassem M: Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells. 40:149–164. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Tan K, Yao Z, Lin BH, Zhang DP, Chen WK, Mao SM, Zhang W, Chen L, Lin Z, et al: A novel Anti-Osteoporosis mechanism of VK2: Interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric Food Chem. 71:2745–2761. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Lin Y, Wang M, Yuan K, Wang Q, Mu P, Du J, Yu Z, Yang S, Huang K, et al: Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res. 10:262022. View Article : Google Scholar : PubMed/NCBI | |
Kanda J, Furukawa M, Izumo N, Shimakura T, Yamamoto N, Takahashi HE and Wakabayashi H: Effects of the linagliptin, dipeptidyl peptidase-4 inhibitor, on bone fragility induced by type 2 diabetes mellitus in obese mice. Drug Discov Ther. 14:218–225. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peyman H, Elizabeth E, Dominik O and Robert B: Bone evaluation study-2: Update on the epidemiology of osteoporosis in Germany. Arch Osteoporos. 19:262024. View Article : Google Scholar | |
Matsunaga T, Miyagi M, Nakazawa T, Murata K, Kawakubo A, Fujimaki H, Koyama T, Kuroda A, Yokozeki Y, Mimura Y, et al: Prevalence and characteristics of spinal sagittal malalignment in patients with osteoporosis. J Clin Med. 10:28272021. View Article : Google Scholar : PubMed/NCBI | |
Louwers YV and Visser JA: Shared genetics between age at menopause, early menopause, POI and other traits. Front Genet. 12:6765462021. View Article : Google Scholar : PubMed/NCBI | |
Farooqui KJ, Mithal A, Kerwen AK and Chandran M: Type 2 diabetes and bone fragility-An under-recognized association. Diabetes Metab Syndr. 15:927–935. 2021. View Article : Google Scholar : PubMed/NCBI | |
Russell AL, Lefavor R, Durand N, Glover L and Zubair AC: Modifiers of mesenchymal stem cell quantity and quality. Transfusion. 58:1434–1440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giudici KV, de França NAG, Peters BSE, Fisberg RM and Martini LA: Associations between markers of glucose metabolism and bone measures among diabetic and non-diabetic adults. J Diabetes Metab Disord. 20:1247–1255. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aleidi SM, Al-Ansari MM, Alnehmi EA, Malkawi AK, Alodaib A, Alshaker M, Benabdelkamel H and Abdel Rahman AM: Lipidomics profiling of patients with low bone mineral density (LBMD). Int J Mol Sci. 23:120172022. View Article : Google Scholar : PubMed/NCBI |