Multidisciplinary approaches to study anaemia with special mention on aplastic anaemia (Review)
- Authors:
- Divya Sankar
- Iyyappan Ramalakshmi Oviya
-
Affiliations: Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India, Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India - Published online on: August 28, 2024 https://doi.org/10.3892/ijmm.2024.5419
- Article Number: 95
-
Copyright: © Sankar et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kalaivani K and Ramachandran P: Time trends in prevalence of anaemia in pregnancy. Indian J Med Res. 147:2682018. View Article : Google Scholar : PubMed/NCBI | |
Belwal E, Pandey S and Sarkar S: Anemia prevalence in india over two decades: Evidence from National Family Health Survey (NFHS). Int J Sci Healthcare Res. 6:335–340. 2021. View Article : Google Scholar | |
Baradhi KM and Badireddy M: Chronic Anemia. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024 | |
Anemia of Inflammation or Chronic Disease-NIDDK. (n.d.). https://rarediseases.org/. | |
Moreno Chulilla JA, Romero Colás MS and Gutiérrez Martín M: Classification of anemia for gastroenterologists. World J Gastroenterol. 15:4627–4637. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abusharib AB: Morphological patterns of anaemia among pregnant women from Sudan. Afr J Lab Med. 8:7432019. View Article : Google Scholar : PubMed/NCBI | |
Sheikh Z: Anemia. Available from: https://www.webmd.com/a-to-z-guides/understanding-anemia-basics. | |
Dongerdiye R, Sampagar A, Devendra R, Warang P and Kedar P: Rare hereditary nonspherocytic hemolytic anemia caused by a novel homozygous mutation, c.301C>A, (Q101K), in the AK1 gene in an Indian family. BMC Med Genomics. 14:1912021. View Article : Google Scholar | |
Mohandas N: Inherited hemolytic anemia: A possessive Beginner's guide. Hematol Am Soc Hematol Educ Program. 2018:377–381. 2018. View Article : Google Scholar | |
Baldwin C, Pandey J and Olarewaju O: Hemolytic Anemia. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024 | |
Tanabe P, Spratling R, Smith D, Grissom P and Hulihan M: CE: Understanding the complications of sickle cell disease. Am J Nurs. 119:26–35. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bajwa H and Basit H: Thalassemia. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024 | |
Huang TL, Zhang TY, Song CY, Lin YB, Sang BH, Lei QL, Lv Y, Yang CH, Li N, Tian X, et al: Gene mutation spectrum of thalassemia among children in yunnan province. Front Pediatr. 8:1592020. View Article : Google Scholar : PubMed/NCBI | |
Young NS: Aplastic Anemia. N Engl J Med. 379:1643–1656. 2018. View Article : Google Scholar : PubMed/NCBI | |
Engidaye G, Melku M and Enawgaw B: Diamond blackfan Anemia: Genetics, pathogenesis, diagnosis and treatment. EJIFCC. 30:67–81. 2019.PubMed/NCBI | |
van Dooijeweert B, Kia SK, Dahl N, Fenneteau O, Leguit R, Nieuwenhuis E, van Solinge W, van Wijk R, Da Costa L and Bartels M: GATA-1 defects in diamond-blackfan Anemia: Phenotypic characterization points to a specific subset of disease. Genes (Basel). 13:4472022. View Article : Google Scholar : PubMed/NCBI | |
Bhandari J, Thada PK, Killeen RB and Puckett Y: Fanconi Anemia. StatPearls. StatPearls Publishing; Treasure Island, FL: 2024 | |
Fouquet C, Le Rouzic MA, Leblanc T, Fouyssac F, Leverger G, Hessissen L, Marlin S, Bourrat E, Fahd M, Raffoux E, et al: Genotype/phenotype correlations of childhood-onset congenital sideroblastic anaemia in a European cohort. Br J Haematol. 187:530–542. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nzelu D, Shangaris P, Story L, Smith F, Piyasena C, Alamelu J, Elmakky A, Pelidis M, Mayhew R and Sankaran S: X-linked sideroblastic anaemia in a female fetus: A case report and a literature review. BMC Med Genomics. 14:2962021. View Article : Google Scholar : PubMed/NCBI | |
Ovesen L and Boeing H; EFCOSUM Group: The use of biomarkers in multicentric studies with particular consideration of iodine, sodium, iron, folate and vitamin D. Eur J Clin Nutr. 56(Suppl 2): S12–S17. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhong S, Liu L, Liu S, Li X, Zhou T and Zhang J: Vitamin D deficiency and the risk of anemia: A meta-analysis of observational studies. Ren Fail. 37:929–934. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel NM, Gutiérrez OM, Andress DL, Coyne DW, Levin A and Wolf M: Vitamin D deficiency and anemia in early chronic kidney disease. Kidney Int. 77:715–720. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arabi SM, Ranjbar G, Bahrami LS, Vafa M and Norouzy A: The effect of vitamin D supplementation on hemoglobin concentration: A systematic review and meta-analysis. Nutr J. 19:112020. View Article : Google Scholar : PubMed/NCBI | |
Nur-Eke R and Özen M: The relationship between vitamin D levels and iron deficiency and anemia in adults applied for periodic medical examination. Clin Lab. Jun 1–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Thomas CE, Guillet R, Queenan RA, Cooper EM, Kent TR, Pressman EK, Vermeylen FM, Roberson MS and O'Brien KO: Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr. 102:1088–1095. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JA, Hwang JS, Hwang IT, Kim DH, Seo JH and Lim JS: Low Vitamin D levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr Hematol Oncol. 32:99–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury R, Taneja S, Bhandari N, Strand TA and Bhan MK: Vitamin D deficiency and mild to moderate anemia in young North Indian children: A secondary data analysis. Nutrition. 57:63–68. 2019. View Article : Google Scholar | |
Uwaezuoke S: Vitamin D deficiency and anemia risk in children: A review of emerging evidence. Pediatric Health Med Ther. 8:47–55. 2017. View Article : Google Scholar | |
Yassin FA, Said NM and Tarek D: Association between Vitamin D receptor gene polymorphisms and anemic patients. Biochemistry Lett. 13:1–10. 2017. View Article : Google Scholar | |
Ochogwu OL, Salawu L, Owojuyigbe TO and Adedeji TA: Vitamin D deficiency and its association with anemia and blood transfusion requirements in Nigerian adults with sickle cell anemia. Plasmatology. 15:2021. View Article : Google Scholar | |
Yu W, Ge M, Lu S, Shi J, Feng S, Li X, Zhang J, Wang M, Huang J, Shao Y, et al: Decreased expression of vitamin D receptor may contribute to the hyperimmune status of patients with acquired aplastic anemia. Eur J Haematol. 96:507–516. 2016. View Article : Google Scholar | |
Napolitano LM: Vitamin D supplementation and hemoglobin: Dosing matters in prevention/treatment of Anemia. Nutr J. 20:232021. View Article : Google Scholar : PubMed/NCBI | |
Athanassiou L, Mavragani CP and Koutsilieris M: The immunomodulatory properties of Vitamin D. Mediterr J Rheumatol. 33:7–13. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rak K and Bronkowska M: Immunomodulatory effect of Vitamin D and its potential role in the prevention and treatment of type 1 diabetes Mellitus-A narrative review. Molecules. 24:532018. View Article : Google Scholar : PubMed/NCBI | |
Fathi ZH, Mohammad JA, Younus ZM and Mahmood SM: Hepcidin as a potential biomarker for the diagnosis of Anemia. Turk J Pharm Sci. 19:603–609. 2022. View Article : Google Scholar : PubMed/NCBI | |
Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E and Gil L: Autoimmune hemolytic anemia: Current knowledge and perspectives. Immun Ageing. 17:382020. View Article : Google Scholar : PubMed/NCBI | |
Saah E, Fadaei P, Gurkan UA and Sheehan V: Sickle cell disease pathophysiology and related molecular and biophysical biomarkers. Hematol Oncol Clin North Am. 36:1077–1095. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kalpatthi R and Novelli EM: Measuring success: Utility of biomarkers in sickle cell disease clinical trials and care. Hematology Am Soc Hematol Educ Program. 2018:482–492. 2018. View Article : Google Scholar : PubMed/NCBI | |
Silva-Junior AL, Garcia NP, Cardoso EC, Dias S, Tarragô AM, Fraiji NA, Gomes MS, Amaral LR, Teixeira-Carvalho A, Martins-Filho OA, et al: Immunological hallmarks of inflammatory status in Vaso-Occlusive crisis of sickle cell Anemia patients. Front Immunol. 12:5599252021. View Article : Google Scholar : PubMed/NCBI | |
Vlachou M, Kamperidis V, Giannakoulas G, Karamitsos T, Vlachaki E and Karvounis H: Biochemical and imaging markers in patients with thalassaemia. Hellenic J Cardiol. 62:4–12. 2021. View Article : Google Scholar | |
Botta A, Forest A, Daneault C, Pantopoulos K, Tantiworawit A, Phrommintikul A, Chattipakorn S, Chattipakorn N, Des Rosiers C, Sweeney G, et al: Identification of circulating Endocan-1 and ether phospholipids as biomarkers for complications in thalassemia patients. Metabolites. 11:702021. View Article : Google Scholar : PubMed/NCBI | |
Li N, An P, Wang J, Zhang T, Qing X, Wu B, Sun L, Ding X, Niu L, Xie Z, et al: Plasma proteome profiling combined with clinical and genetic features reveals the pathophysiological characteristics of β-thalassemia. iScience. 25:1040912022. View Article : Google Scholar | |
Caprari P, Profumo E, Massimi S, Buttari B, Riganò R, Regine V, Gabbianelli M, Rossi S, Risoluti R, Materazzi S, et al: Hemorheological profiles and chronic inflammation markers in transfusion-dependent and non-transfusion-dependent thalassemia. Front Mol Biosci. 9:11088962023. View Article : Google Scholar | |
Kelkka T, Tyster M, Lundgren S, Feng X, Kerr C, Hosokawa K, Huuhtanen J, Keränen M, Patel B, Kawakami T, et al: Anti-COX-2 autoantibody is a novel biomarker of immune aplastic anemia. Leukemia. 36:2317–2327. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Dong H, Li Y, Shen Y, Hong Y, Chen Y, Liu S, Wu X, Liu W, Hu H, et al: Apolipoprotein-a is a potential prognosis biomarker for severe aplastic Anemia patients treated with ATG-based immunosuppressive therapy: A Single-center retrospective study. Blood. 140(Suppl 1): S11043–S11044. 2022. View Article : Google Scholar | |
Adhikari S, Nayek K, Bandyopadhyay A and Mandal P: Implication of therapeutic outcomes associated with molecular characterization of paediatric aplastic anaemia. Biochem Biophys Rep. 25:1008992021.PubMed/NCBI | |
Gurnari C, Pagliuca S, Prata PH, Galimard JE, Catto LFB, Larcher L, Sebert M, Allain V, Patel BJ, Durmaz A, et al: Clinical and molecular determinants of clonal evolution in aplastic anemia and paroxysmal nocturnal hemoglobinuria. J Clin Oncol. 41:132–142. 2023. View Article : Google Scholar : | |
Da Costa L, O'Donohue MF, van Dooijeweert B, Albrecht K, Unal S, Ramenghi U, Leblanc T, Dianzani I, Tamary H, Bartels M, et al: Molecular approaches to diagnose Diamond-Blackfan Anemia: The EuroDBA experience. Eur J Med Genet. 61:664–673. 2018. View Article : Google Scholar | |
Khan A, Ali A, Junaid M, Liu C, Kaushik AC, Cho WCS and Wei DQ: Identification of novel drug targets for Diamond-Blackfan Anemia based on RPS19 gene mutation using protein-protein interaction network. BMC Syst Biol. 12(Suppl 4): S392018. View Article : Google Scholar | |
Sieff C: Diamond-Blackfan Anemia. GeneReviews®; Seattle, WA: 2023 | |
Moreno OM, Paredes AC, Suarez-Obando F and Rojas A: An update on Fanconi anemia: Clinical, cytogenetic and molecular approaches (Review). Biomed Rep. 15:742021. View Article : Google Scholar : PubMed/NCBI | |
Miele E, Mastronuzzi A, Po A, Carai A, Alfano V, Serra A, Colafati GS, Strocchio L, Antonelli M, Buttarelli FR, et al: Characterization of medulloblastoma in Fanconi Anemia: A novel mutation in the BRCA2 gene and SHH molecular subgroup. Biomark Res. 3:132015. View Article : Google Scholar : PubMed/NCBI | |
Hoving V, Nijssen LE, Donker AE, Roelofs R, Schols SEM and Swinkels DW: Erythropoiesis-Hepcidin-Iron axis in patients with X-linked sideroblastic anaemia: An explorative biomarker study. Br J Haematol. 202:1216–1219. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wishart DS, Bartok B, Oler E, Liang KYH, Budinski Z, Berjanskii M, Guo A, Cao X and Wilson M: MarkerDB: An online database of molecular biomarkers. Nucleic Acids Res. 49:D1259–D1267. 2021. View Article : Google Scholar : | |
Hindmarsh JT, Oliveras L and Greenway DC: Biochemical differentiation of the porphyrias. Clin Biochem. 32:609–619. 1999. View Article : Google Scholar | |
Zuijderhoudt FM, Koehorst SG, Kluitenberg WE and Dorresteijn-de Bok J: On accuracy and precision of a HPLC method for measurement of urine porphyrin concentrations. Clin Chem Lab Med. 38:227–230. 2000. View Article : Google Scholar : PubMed/NCBI | |
van der Dijs FP, Schnog JJ, Brouwer DA, Velvis HJ, van den Berg GA, Bakker AJ, Duits AJ, Muskiet FD and Muskiet FA: Elevated homocysteine levels indicate suboptimal folate status in pediatric sickle cell patients. Am J Hematol. 59:192–198. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nelson MC, Zemel BS, Kawchak DA, Barden EM, Frongillo EA Jr, Coburn SP, Ohene-Frempong K and Stallings VA: Vitamin B6 status of children with sickle cell disease. J Pediatr Hematol Oncol. 24:463–469. 2002. View Article : Google Scholar : PubMed/NCBI | |
De Luca C, Filosa A, Grandinetti M, Maggio F, Lamba M and Passi S: Blood antioxidant status and urinary levels of catecholamine metabolites in β-thalassemia. Free Radic Res. 30:453–462. 1999. View Article : Google Scholar : PubMed/NCBI | |
Iranpour R, Akbar MR and Haghshenas I: Glucose-6-phosphate dehydrogenase deficiency in neonates. Indian J Pediatr. 70:855–857. 2003. View Article : Google Scholar | |
Kwon JM, Cho Y, Jeon KH, Cho S, Kim KH, Baek SD, Jeung S, Park J and Oh BH: A deep learning algorithm to detect anaemia with ECGs: A retrospective, multicentre study. Lancet Digit Health. 2:e358–e367. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rustam F, Ashraf I, Jabbar S, Tutusaus K, Mazas C, Barrera AEP and de la Torre Diez I: Prediction of [Formula: See text]-Thalassemia carriers using complete blood count features. Sci Rep. 12:199992022. View Article : Google Scholar : PubMed/NCBI | |
Farooq M and Ali Younas H: Beta thalassemia carriers detection empowered federated Learning. 2023, Available from: https://doi.org/10.48550/arXiv.2306.01818. | |
Saputra DCE, Sunat K and Ratnaningsih T: A new artificial intelligence approach using extreme learning machine as the potentially effective model to predict and analyze the diagnosis of Anemia. Healthcare (Basel). 11:6972023. View Article : Google Scholar : PubMed/NCBI | |
Xiang P, Wu X, Zeng Z, Lin Z, Guo Y, Ma X, Lin J and Wang W: Quantitative analysis of pelvic bone marrow fat using an MRI-based machine learning method for distinguishing aplastic anaemia from myelodysplastic syndromes. Clin Radiol. 78:e463–e468. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Yan M, Zhang J, Binghang L, Guo Y, Wan Y, Yi M, Lan Y, Cai Y, Feng J, et al: Long-term outcome prediction after immunosuppressive therapy for severe aplastic Anemia in childhood by machine learning methods. SSRN Electronic J. 2020, Available from: https://ssrn.com/abstract=3582734 or http://dx.doi.org/10.2139/ssrn.3582734. | |
Uçucu S, Karabıyık T and AzikF M: Machine learning models can predict the presence of variants in hemoglobin: Artificial neural network-based recognition of human hemoglobin variants by HPLC. Turkish J Biochemistry. 485–411. 2023. | |
Mo D, Zheng Q, Xiao B and Li L: Predicting thalassemia using deep neural network based on red blood cell indices. Clin Chim Acta. 543:1173292023. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Dong C, Gao Y, Li J, Han M and Wang L: A deep learning model for the automatic recognition of aplastic Anemia, myelodysplastic syndromes, and acute myeloid leukemia based on bone marrow smear. Front Oncol. 12:8449782022. View Article : Google Scholar : PubMed/NCBI | |
Appiahene P, Asare JW, Donkoh ET, Dimauro G and Maglietta R: Detection of iron deficiency Anemia by medical images: A comparative study of machine learning algorithms. BioData Min. 16:22023. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Lou J, Pan Z, Luo J, Zhang X, Zhang H, Li J, Wang L, Cui X, Ji B and Chen L: Prediction of Anemia using facial images and deep learning technology in the emergency department. Front Public Health. 10:9643852022. View Article : Google Scholar : PubMed/NCBI | |
Aparna V, Sarath TV and Ramachandran KI: Simulation model for anemia detection using RBC counting algorithms and Watershed transform. In: 2017 International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT); IEEE; pp. 284–291. 2017 | |
De S and Chakraborty B: Case-based reasoning (CBR)-based Anemia Severity Detection System (ASDS) using machine learning algorithm. Advanced Machine Learning Technologies and Applications. 621–632. 2021. View Article : Google Scholar | |
Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, Hammel N, Liu Y and Varadarajan AV: Detection of anaemia from retinal fundus images via deep learning. Nat Biomed Eng. 4:18–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Amruth A, Ramanan R, Rhea P, Vishal S and Saravanan S: Big Data Application in Cancer Classification by Analysis of RNA-seq Gene Expression. In: 2023 3rd International Conference on Intelligent Technologies (CONIT); IEEE; pp. 1–6. 2023 | |
Manoharan S and Iyyappan OR: A hybrid protocol for finding novel gene targets for various diseases using microarray expression data analysis and text mining. Methods Mol Biol. 2496:41–70. 2022. View Article : Google Scholar : PubMed/NCBI | |
Iyyappan OR and Manoharan S: Finding gene associations by text mining and annotating it with gene ontology. Methods Mol Biol. 2496:71–90. 2022. View Article : Google Scholar : PubMed/NCBI | |
Perveen G, Alturise F, Alkhalifah T and Daanial Khan Y: Hemolytic-Pred: A machine learning-based predictor for hemolytic proteins using position and composition-based features. Digit Health. 9:205520762311807392023. View Article : Google Scholar : PubMed/NCBI | |
Mansour-Hendili L, Aissat A, Badaoui B, Sakka M, Gameiro C, Ortonne V, Wagner-Ballon O, Pissard S, Picard V, Ghazal K, et al: Exome sequencing for diagnosis of congenital hemolytic anemia. Orphanet J Rare Dis. 15:1802020. View Article : Google Scholar : PubMed/NCBI | |
Fermo E, Vercellati C, Marcello AP, Keskin EY, Perrotta S, Zaninoni A, Brancaleoni V, Zanella A, Giannotta JA, Barcellini W and Bianchi P: Targeted next generation sequencing and diagnosis of congenital hemolytic anemias: A three years experience monocentric study. Front Physiol. 12:6845692021. View Article : Google Scholar : PubMed/NCBI | |
Jamwal M, Aggarwal A, Palodhi A, Sharma P, Bansal D, Trehan A, Malhotra P, Maitra A and Das R: Next-generation sequencing-based diagnosis of unexplained inherited hemolytic anemias reveals wide genetic and phenotypic heterogeneity. J Mol Diagn. 22:579–590. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pagliuca S, Gurnari C, Hercus C, Hergalant S, Nadarajah N, Wahida A, Terkawi L, Mori M, Zhou W, Visconte V, et al: Molecular landscape of immune pressure and escape in aplastic anemia. Leukemia. 37:202–211. 2023. View Article : Google Scholar : | |
Hou H, Li D, Yao YH, Lu J, Sun YN, Hu YX, Wu SY, Chu XR, Xiao PF, Xu GQ and Hu SY: Proteomic analysis for identifying the differences in molecular profiling between fanconi anaemia and aplastic anaemia. Am J Transl Res. 11:6522–6533. 2019.PubMed/NCBI | |
Mehta S, Medicherla KM, Gulati S, Sharma N, Gupta S, Parveen R, Mishra AK and Suravajhala P: Whole Exome Sequencing of Aplastic Anemia Patients Specific to India Reveals Unique Mutations. 2021, Available at SSRN: https://ssrn.com/abstract=4001799 or http://dx.doi.org/10.2139/ssrn.4001799. | |
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang Y, Tong J, Zhang Y, Liu J, Chang L, et al: Decoding the pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq. Cell Discov. 8:412022. View Article : Google Scholar : PubMed/NCBI | |
Bartels M and Bierings M: How I manage children with Diamond-Blackfan anaemia. Br J Haematol. 184:123–133. 2019. View Article : Google Scholar | |
Judy J, Wang X, Seifuddin F, Tumburu L, Pirooznia M and Thein SL: RNA Seq profiles and bioinformatics validation in a large sample of sickle cell disease patients. Blood. 136(Suppl 1): S13–S14. 2020. View Article : Google Scholar | |
Ben Hamda C, Sangeda R, Mwita L, Meintjes A, Nkya S, Panji S, Mulder N, Guizani-Tabbane L, Benkahla A, Makani J, et al: A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study. PLoS One. 13:e01994612018. View Article : Google Scholar : PubMed/NCBI | |
Mwita LA, Mawalla WF, Mtiiye FR, Kandonga D, Kent J, Makani J and Sangeda RZ: Infrastructure for bioinformatics applications in Tanzania: Lessons from the sickle cell programme. PLoS Comput Biol. 19:e10108482023. View Article : Google Scholar : PubMed/NCBI | |
Kalaigar SS, Rajashekar RB, Nataraj SM, Vishwanath P and Prashant A: Bioinformatic tools for the identification of MicroRNAs regulating the transcription factors in patients with β-thalassemia. Bioinform Biol Insights. 16:117793222211155362022. View Article : Google Scholar | |
Chowdhury A and Sruthi VS: A bioinformatics approach for the treatment of thalassemia using molecular docking. Biological Forum An Int J. 13:332–338. 2021. | |
Hameed AR, Fakhri Ali S, N Almanaa T, Aljasir MA, Alruwetei AM, Sanami S, Ayaz H, Ali I, Ahmad F and Ahmad S: Exploring the hub genes and potential drugs involved in Fanconi anemia using microarray datasets and bioinformatics analysis. J Biomol Struct Dyn. Dec 27–2023.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Reyes P, García-de Teresa B, Juárez U, Pérez-Villatoro F, Fiesco-Roa MO, Rodríguez A, Molina B, Villarreal-Molina MT, Meléndez-Zajgla J, Carnevale A, et al: Fanconi Anemia patients from an indigenous community in Mexico Carry a new founder pathogenic variant in FANCG. Int J Mol Sci. 23:23342022. View Article : Google Scholar : PubMed/NCBI | |
Fang R, Zhang J, Yang H, Shi J, Zeng H, Zhu X, Wei D, Yuan P, Cheng T and Zhang Y: Highly efficient gene editing and single cell analysis of hematopoietic stem/progenitor cells from X-linked sideroblastic anemia patients. Signal Transduct Target Ther. 6:2482021. View Article : Google Scholar : PubMed/NCBI | |
An W, Zhang J, Chang L, Zhang Y, Wan Y, Ren Y, Niu D, Wu J, Zhu X and Guo Y: Mutation analysis of Chinese sporadic congenital sideroblastic anemia by targeted capture sequencing. J Hematol Oncol. 8:552015. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa K, Kajigaya S, Keyvanfar K, Qiao W, Xie Y, Townsley DM, Feng X and Young NS: T cell transcriptomes from paroxysmal nocturnal hemoglobinuria patients reveal novel signaling pathways. J Immunol. 199:477–488. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zoumbos NC, Gascón P, Djeu JY, Trost SR and Young NS: Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med. 312:257–265. 1985. View Article : Google Scholar : PubMed/NCBI | |
Deng XZ, Du M, Peng J, Long JX, Zheng CJ, Tan Y, Li LJ, Chen HY, Qing C, Pang YY, et al: Associations between the HLA-A/B/DRB1 polymorphisms and aplastic anemia: Evidence from 17 case-control studies. Hematology. 23:154–162. 2018. View Article : Google Scholar | |
Bo L, Mei-Ying L, Yang Z, Shan-Mi W and Xiao-Hong Z: Aplastic anemia associated with pregnancy: Maternal and fetal complications. J Matern Fetal Neonatal Med. 29:1120–1124. 2016. View Article : Google Scholar | |
Kordasti S, Costantini B, Seidl T, Perez Abellan P, Martinez Llordella M, McLornan D, Diggins KE, Kulasekararaj A, Benfatto C, Feng X, et al: Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood. 128:1193–1205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee NCJ, Patel B, Etra A, Bat T, Ibrahim IF, Vusirikala M, Chen M, Rosado F, Jaso JM, Young NS and Chen W: SARS-CoV-2 infection associated with aplastic anemia and pure red cell aplasia. Blood Adv. 6:3840–3843. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ahamed M, Akhtar MJ, Verma S, Kumar A and Siddiqui MK: Environmental lead exposure as a risk for childhood aplastic anemia. Biosci Trends. 5:38–43. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adhikari S and Mandal P: Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. Life Sci. 228:47–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
Putkowski S: The national organization for rare disorders (NORD). NASN School Nurse. 25:38–41. 2010. View Article : Google Scholar | |
Sinha S, Chatterjee SS, Biswas M, Nag A, Banerjee D, De R and Sengupta A: SWI/SNF subunit expression heterogeneity in human aplastic anemia stem/progenitors. Exp Hematol. 62:39–44.e2. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khanna-Gupta A, Sarvepalli S, Majumder S, Karunakaran C, Manoharan M, Prabhu S, Bafna V, Murugan S, Bose C, Gupta R, et al: Mutations in the telomerase complex and expression levels of the TERT gene determine severity and outcome of disease in aplastic anemia patients. Blood. 128:1502. 2016. View Article : Google Scholar | |
Medinger M, Drexler B, Lengerke C and Passweg J: Pathogenesis of acquired aplastic anemia and the role of the bone marrow microenvironment. Front Oncol. 8:5872018. View Article : Google Scholar : PubMed/NCBI | |
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al: The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33. 2016.PubMed/NCBI | |
Johns Hopkins University and Baltimore M: McKusick-Nathans Institute of Genetic Medicine OMIM® -Online Mendelian Inheritance in Man. World Wide Web. URL: https://omim.org/. | |
Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM and Young NS: Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 352:1413–1424. 2005. View Article : Google Scholar : PubMed/NCBI | |
Adhikari S and Mandal P: Novel role of AGT gene in aplastic anaemia among paediatric patients based on gene expression profiling. bioRxiv: May 29, 2020 (Epub ahead of print). View Article : Google Scholar | |
Zhou Y, Zhang L, Song S, Xu L, Yan Y, Wu H, Tong X and Yan H: Elevated GAS2L3 expression correlates with poor prognosis in patients with Glioma: A study based on bioinformatics and immunohistochemical analysis. Front Genet. 12:6492702021. View Article : Google Scholar : PubMed/NCBI | |
Darb-Esfahani S, Kronenwett R, von Minckwitz G, Denkert C, Gehrmann M, Rody A, Budczies J, Brase JC, Mehta MK, Bojar H, et al: Thymosin beta 15A (TMSB15A) is a predictor of chemotherapy response in triple-negative breast cancer. Br J Cancer. 107:1892–1900. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shukla S, Tripathi AK, Verma SP, Yadav DK, Tripathi RK, Maurya S and Awasthi N: Association of Interleukin-1β-31C/T, -511T/C and -3954C/T single nucleotide polymorphism and their blood plasma level in acquired aplastic anemia. Indian J Hematol Blood Transfus. 37:210–219. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cotoraci C, Ciceu A, Sasu A and Hermenean A: Natural antioxidants in anemia treatment. Int J Mol Sci. 22:18832021. View Article : Google Scholar : PubMed/NCBI | |
Babushok DV, Li Y, Roth JJ, Perdigones N, Cockroft JD, Biegel JA, Mason PJ and Bessler M: Common polymorphic deletion of glutathione S-transferase theta predisposes to acquired aplastic anemia: Independent cohort and meta-analysis of 609 patients. Am J Hematol. 88:862–867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J and Bledsoe JR: Inherited bone marrow failure syndromes and germline predisposition to myeloid neoplasia: A practical approach for the pathologist. Semin Diagn Pathol. 40:429–442. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee R and Law S: Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. Eur J Cell Biol. 97:32–43. 2018. View Article : Google Scholar | |
Ighodaro OM and Akinloye OA: First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 54:287–293. 2018. View Article : Google Scholar | |
Wang S, Song R, Wang Z, Jing Z, Wang S and Ma J: S100A8/A9 in inflammation. Front Immunol. 9:12982018. View Article : Google Scholar : PubMed/NCBI | |
Giudice V, Wu Z, Kajigaya S, Fernandez Ibanez MDP, Rios O, Cheung F, Ito S and Young NS: Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic anemia and myelodysplastic syndromes. Cytokine. 113:462–465. 2019. View Article : Google Scholar : | |
Lundgren S, Keränen MAI, Kankainen M, Huuhtanen J, Walldin G, Kerr CM, Clemente M, Ebeling F, Rajala H, Brück O, et al: Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia. Leukemia. 35:1365–1379. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Chen C, Xiao Y, Chen X, Guo L, Tan G, Huang G, Luo W, Zhou M, Li Y, et al: Abnormal miR-214/A20 expression might play a role in T cell activation in patients with aplastic anemia. Blood Sci. 2:100–105. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ganapathi KA, Townsley DM, Hsu AP, Arthur DC, Zerbe CS, Cuellar-Rodriguez J, Hickstein DD, Rosenzweig SD, Braylan RC, Young NS, et al: GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 125:56–70. 2015. View Article : Google Scholar : | |
You X, Yang Q, Yan K, Wang SR, Huang RR, Wang SQ, Gao CY, Li L and Lian ZX: Multi-Omics profiling identifies pathways associated with CD8+ T-Cell activation in severe aplastic anemia. Front Genet. 12:7909902022. View Article : Google Scholar : | |
Zaimoku Y, Patel BA, Kajigaya S, Feng X, Alemu L, Quinones Raffo D, Groarke EM and Young NS: Deficit of circulating CD19+ CD24hi CD38hi regulatory B cells in severe aplastic anaemia. Br J Haematol. 190:610–617. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fattizzo B, Giannotta JA and Barcellini W: Mesenchymal stem cells in aplastic anemia and myelodysplastic syndromes: The 'Seed and Soil' Crosstalk. Int J Mol Sci. 21:54382020. View Article : Google Scholar | |
Wang XA, Li JP, Wu KH, Yang SF and Chao YH: Mesenchymal stem cells in acquired aplastic anemia: The spectrum from basic to clinical utility. Int J Mol Sci. 24:44642023. View Article : Google Scholar : PubMed/NCBI | |
Broglie L, Margolis D and Medin JA: Yin and Yang of mesenchymal stem cells and aplastic anemia. World J Stem Cells. 9:219–226. 2017. View Article : Google Scholar | |
Wu D, Wen X, Liu W, Hu H, Ye B and Zhou Y: Comparison of the effects of deferasirox, deferoxamine, and combination of deferasirox and deferoxamine on an aplastic anemia mouse model complicated with iron overload. Drug Des Devel Ther. 12:1081–1091. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lan Y, Liu F, Chang L, Liu L, Zhang Y, Yi M, Cai Y, Feng J, Han Z, Han Z and Zhu X: Combination of umbilical cord mesenchymal stem cells and standard immunosuppressive regimen for pediatric patients with severe aplastic anemia. BMC Pediatr. 21:1022021. View Article : Google Scholar : PubMed/NCBI | |
Atere AD, Oseni BSA, Agbona TO, Idomeh FA, Akinbo DB and Osadolor HB: Free radicals inhibit the haematopoietic elements and antioxidant agents of rats exposed to pyrethroids insecticides. J Exp Res. 7:66–74. 2019. | |
Babushok DV: When does a PNH clone have clinical significance? Hematology Am Soc Hematol Educ Program. 2021:143–152. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cecchi N, Giannotta JA, Barcellini W and Fattizzo B: A case of severe aplastic anaemia after SARS-CoV-2 vaccination. Br J Haematol. 196:1334–1336. 2022. View Article : Google Scholar | |
Ahmed P, Chaudhry QUN, Satti TM, Mahmood SK, Ghafoor T, Shahbaz N, Khan MA, Satti HS, Akram Z, Iftikhar R, et al: Epidemiology of aplastic anemia: A study of 1324 cases. Hematology. 25:48–54. 2020. View Article : Google Scholar : PubMed/NCBI | |
Contejean A, Resche-Rigon M, Tamburini J, Alcantara M, Jardin F, Lengliné E, Adès L, Bouscary D, Marçais A, Lebon D, et al: Aplastic anemia in the elderly: A nationwide survey on behalf of the french reference center for aplastic anemia. Haematologica. 104:256–262. 2019. View Article : Google Scholar : | |
Durrani J and Maciejewski JP: Idiopathic aplastic anemia vs hypocellular myelodysplastic syndrome. Hematology. 2019:97–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barrett J, Saunthararajah Y and Molldrem J: Myelodysplastic syndrome and aplastic anemia: Distinct entities or diseases linked by a common pathophysiology? Semin Hematol. 37:15–29. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sun L and Babushok DV: Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood. 136:36–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ogawa S: Clonal hematopoiesis in acquired aplastic anemia. Blood. 128:337–347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Revy P and Touzot F: The immunologic complications and genetic origins of telomere disorders. Encyclopedia of Immunobiology. Elsevier; pp. 451–457. 2016, View Article : Google Scholar | |
Barcellini W, Fattizzo B and Cortelezzi A: Autoimmune hemolytic anemia, autoimmune neutropenia and aplastic anemia in the elderly. Eur J Intern Med. 58:77–83. 2018. View Article : Google Scholar : PubMed/NCBI | |
Townsley DM, Dumitriu B and Young NS: Bone marrow failure and the telomeropathies. Blood. 124:2775–2783. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen CY, Chen TT, Hsieh CY, Lien MY, Yeh SP and Chen CC: Case reports of management of aplastic anemia after COVID-19 vaccination: A single institute experience in Taiwan. Int J Hematol. 117:149–152. 2023. View Article : Google Scholar | |
Kmira Z, Sabrine K, Monia G, Imen A, Dorra C, Rania B, Neila F, Walid B, Monia Z, Yosra BY, et al: A case of acquired aplastic Anemia after severe Hepatitis-probably induced by the Pfizer/BioNTech vaccine: A case report and review of literature. Vaccines (Basel). 11:12282023. View Article : Google Scholar | |
Sridhara S, Nair R and Stanek M: Severe aplastic Anemia after receiving SARS-CoV-2 moderna mRNA vaccination. J Hematol. 11:34–39. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tabata S, Hosoi H, Murata S, Takeda S, Mushino T and Sonoki T: Severe aplastic anemia after COVID-19 mRNA vaccination: Causality or coincidence? J Autoimmun. 126:1027822022. View Article : Google Scholar | |
Park AK, Waheed A, Forst DA and Al-Samkari H: Characterization and prognosis of temozolomide-induced aplastic anemia in patients with central nervous system malignancies. Neuro Oncol. 24:964–973. 2022. View Article : Google Scholar : | |
Ata F, Akkam Veettil SF, Gaber M, Omar NE, Madani A, Mah Afifi H, Aldardouri MM, Amer A, Kohla S and Zar Gul AR: Fatal temozolomide induced aplastic anemia in a female with Glioblastoma multiforme : A case report and literature review. Clin Case Rep. 9:1641–1646. 2021. View Article : Google Scholar : PubMed/NCBI | |
Younan RG, Raad RA, Sawan BY and Said R: Aplastic anemia secondary to dual cancer immunotherapies a physician nightmare: Case report and literature review. Allergy Asthma Clin Immunol. 17:1122021. View Article : Google Scholar : PubMed/NCBI | |
Hou JW and Wang TR: Differentiation of Fanconi anemia from aplastic anemia by chromosomal breakage test. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 38:121–126. 1997.PubMed/NCBI | |
Green AM and Kupfer GM: Fanconi Anemia. Hematol Oncol Clin North Am. 23:193–214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ayas M, Siddiqui K, Al-Jefri A, Al-Ahmari A, Ghemlas I, Al-Saedi H, Al-Anazi A, Khan S, El-Solh H and Al-Seraihi A: Does mixed chimerism after allogeneic hematopoietic cell transplantation in pediatric patients with fanconi anemia impact on outcome? Transplant Cell Ther. 27:257.e1–257.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cincinnati Children's: Fanconi Anemia. https://www.cincinnatichildrens.org/health/f/fanconi-anemia. Accessed December 22, 2022 | |
Zhao XC, Zhao L, Sun XY, Xu ZS, Ju B, Meng FJ and Zhao HG: Excellent response of severe aplastic anemia to treatment of gut inflammation: A case report and review of the literature. World J Clin Cases. 8:425–435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao XC, Xue CJ, Song H, Gao BH, Han FS and Xiao SX: Bowel inflammatory presentations on computed tomography in adult patients with severe aplastic anemia during flared inflammatory episodes. World J Clin Cases. 11:576–597. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Qi W, Zhang X, Ran N, Liu C, Fu R and Shao Z: Plasma metabolomic and intestinal microbial analyses of patients with severe aplastic anemia. Front Cell Dev Biol. 9:6698872021. View Article : Google Scholar : PubMed/NCBI | |
Taderegew MM, Gebremariam T, Tareke AA and Woldeamanuel GG: Anemia and its associated factors among type 2 diabetes mellitus patients attending debre berhan referral hospital, North-East Ethiopia: A Cross-Sectional study. J Blood Med. 11:47–58. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bohlius J, Bohlke K, Castelli R, Djulbegovic B, Lustberg MB, Martino M, Mountzios G, Peswani N, Porter L, Tanaka TN, et al: Management of Cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. J Clin Oncol. 37:1336–1351. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boennelykke A, Jensen H, Falborg AZ, Granfeldt Østgård LS, Hansen AT, Christensen KS and Vedsted P: Diagnostic workup of cancer in patients with new-onset anaemia: A Danish cohort study in general practice. Scand J Prim Health Care. 39:391–402. 2021. View Article : Google Scholar : PubMed/NCBI | |
van Vliet NA, Kamphuis AEP, den Elzen WPJ, Blauw GJ, Gussekloo J, Noordam R and van Heemst D: Thyroid function and risk of anemia: A Multivariable-adjusted and mendelian randomization analysis in the UK Biobank. J Clin Endocrinol Metab. 107:e643–e652. 2022. View Article : Google Scholar : |