1
|
Friedman JR and Nunnari J: Mitochondrial
form and function. Nature. 505:335–343. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Labbé K, Murley A and Nunnari J:
Determinants and functions of mitochondrial behavior. Annu Rev Cell
Dev Biol. 30:357–391. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xing J, Qi L, Liu X, Shi G, Sun X and Yang
Y: Roles of mitochondrial fusion and fission in breast cancer
progression: A systematic review. World J Surg Oncol. 20:3312022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Giacomello M, Pyakurel A, Glytsou C and
Scorrano L: The cell biology of mitochondrial membrane dynamics.
Nat Rev Mol Cell Biol. 21:204–224. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wai T and Langer T: Mitochondrial dynamics
and metabolic regulation. Trends Endocrinol Metab. 27:105–117.
2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Eisner V, Picard M and Hajnóczky G:
Mitochondrial dynamics in adaptive and maladaptive cellular stress
responses. Nat Cell Biol. 20:755–765. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vyas S, Zaganjor E and Haigis MC:
Mitochondria and Cancer. Cell. 166:555–566. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Boulton DP and Caino MC: Mitochondrial
fission and fusion in tumor progression to metastasis. Front Cell
Dev Biol. 10:8499622022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Quintana-Cabrera R and Scorrano L:
Determinants and outcomes of mitochondrial dynamics. Mol Cell.
83:857–876. 2023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chan DC: Mitochondrial dynamics and its
involvement in disease. Annu Rev Pathol. 15:235–259. 2020.
View Article : Google Scholar
|
11
|
Rodrigues T and Ferraz LS: Therapeutic
potential of targeting mitochondrial dynamics in cancer. Biochem
Pharmacol. 182:1142822020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zacharioudakis E and Gavathiotis E:
Mitochondrial dynamics proteins as emerging drug targets. Trends
Pharmacol Sci. 44:112–127. 2023. View Article : Google Scholar :
|
13
|
Kumar S, Ashraf R and C KA: Mitochondrial
dynamics regulators: Implications for therapeutic intervention in
cancer. Cell Biol Toxicol. 38:377–406. 2022. View Article : Google Scholar
|
14
|
Zeng X, Zhang YD, Ma RY, Chen YJ, Xiang
XM, Hou DY, Li XH, Huang H, Li T and Duan CY: Activated Drp1
regulates p62-mediated autophagic flux and aggravates inflammation
in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome
axis. Mil Med Res. 9:252022.PubMed/NCBI
|
15
|
Chuang KC, Chang CR, Chang SH, Huang SW,
Chuang SM, Li ZY, Wang ST, Kao JK, Chen YJ and Shieh JJ:
Imiquimod-induced ROS production disrupts the balance of
mitochondrial dynamics and increases mitophagy in skin cancer
cells. J Dermatol Sci. 98:152–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang Y, Krantz S, Qin X, Li S, Gunasekara
H, Kim YM, Zimnicka A, Bae M, Ma K, Toth PT, et al: Caveolin-1
controls mitochondrial damage and ROS production by regulating
fission-fusion dynamics and mitophagy. Redox Biol. 52:1023042022.
View Article : Google Scholar
|
17
|
Wu Z, Xiao C, Long J, Huang W, You F and
Li X: Mitochondrial dynamics and colorectal cancer biology:
Mechanisms and potential targets. Cell Commun Signal. 22:912024.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Harrington JS, Ryter SW, Plataki M, Price
DR and Choi AMK: Mitochondria in health, disease and aging. Physiol
Rev. 103:2349–2422. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Mai Q, Zhang X, Xie C and Zhang
Y: Microenvironment signals and mechanisms in the regulation of
osteosarcoma. Osteosarcoma-Biology, Behavior and Mechanisms. Honoki
K and Weiss KR: InTech; 2017, View
Article : Google Scholar
|
20
|
Tian B, Du X, Zheng S and Zhang Y: The
role of tumor microenvironment in regulating the plasticity of
osteosarcoma cells. Int J Mol Sci. 23:161552022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Arima Y, Nobusue H and Saya H: Targeting
of cancer stem cells by differentiation therapy. Cancer Sci.
111:2689–2695. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang Y, Pan Y, Xie C and Zhang Y: miR-34a
exerts as a key regulator in the dedifferentiation of osteosarcoma
via PAI-1-Sox2 axis. Cell Death Dis. 9:7772018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pan Y and Zhang Y, Tang W and Zhang Y:
Interstitial serum albumin empowers osteosarcoma cells with FAIM2
transcription to obtain viability via dedifferentiation. In Vitro
Cell Dev Biol Anim. 56:129–144. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
26
|
Youle RJ and Karbowski M: Mitochondrial
fission in apoptosis. Nat Rev Mol Cell Biol. 6:657–663. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Sheridan C and Martin SJ: Mitochondrial
fission/fusion dynamics and apoptosis. Mitochondrion. 10:640–648.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fulda S: Regulation of apoptosis pathways
in cancer stem cells. Cancer Lett. 338:168–173. 2013. View Article : Google Scholar
|
29
|
Vasileiou PVS, Evangelou K, Vlasis K,
Fildisis G, Panayiotidis MI, Chronopoulos E, Passias PG,
Kouloukoussa M, Gorgoulis VG and Havaki S: Mitochondrial
homeostasis and cellular senescence. Cells. 8:6862019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lin W, Lu X, Yang H, Huang L, Huang W,
Tang Y, Liu S, Wang H and Zhang Y: Metabolic heterogeneity protects
metastatic mucosal melanomas cells from ferroptosis. Int J Mol Med.
50:1242022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang H, Wu H, Zheng J, Yu P, Xu L, Jiang
P, Gao J, Wang H and Zhang Y: Transforming growth factor β1 signal
is crucial for dedifferentiation of cancer cells to cancer stem
cells in osteosarcoma. Stem Cells. 31:433–446. 2013. View Article : Google Scholar
|
32
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y,
Wang Z, Zhai Z, Tanzhu G, Yang J and Zhou R: Cancer stem cells:
Advances in knowledge and implications for cancer therapy. Signal
Transduct Target Ther. 9:1702024. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li Y, Wang Z, Ajani JA and Song S: Drug
resistance and Cancer stem cells. Cell Commun Signal. 19:192021.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci
R and LLeonart ME: Insights into new mechanisms and models of
cancer stem cell multidrug resistance. Semin Cancer Biol.
60:166–180. 2020. View Article : Google Scholar
|
35
|
Zheng Q, Zhang M, Zhou F, Zhang L and Meng
X: The breast cancer stem cells traits and drug resistance. Front
Pharmacol. 11:5999652021. View Article : Google Scholar : PubMed/NCBI
|
36
|
De Angelis ML, Francescangeli F, La Torre
F and Zeuner A: Stem cell plasticity and dormancy in the
development of cancer therapy resistance. Front Oncol. 9:6262019.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Genovese I, Carinci M, Modesti L, Aguiari
G, Pinton P and Giorgi C: Mitochondria: Insights into crucial
features to overcome cancer chemoresistance. Int J Mol Sci.
22:47702021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Vlashi E, Lagadec C, Vergnes L, Matsutani
T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian
C, et al: Metabolic state of glioma stem cells and nontumorigenic
cells. Proc Natl Acad Sci USA. 108:16062–16067. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie
MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association
of reactive oxygen species levels and radioresistance in cancer
stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Civenni G, Bosotti R, Timpanaro A, Vàzquez
R, Merulla J, Pandit S, Rossi S, Albino D, Allegrini S, Mitra A, et
al: Epigenetic control of mitochondrial fission enables
self-renewal of stem-like tumor cells in human prostate cancer.
Cell Metab. 30:303–318.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xie Q, Wu Q, Horbinski CM, Flavahan WA,
Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y, et al:
Mitochondrial control by DRP1 in brain tumor initiating cells. Nat
Neurosci. 18:501–510. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wu MJ, Chen YS, Kim MR, Chang CC, Gampala
S, Zhang Y, Wang Y, Chang CY, Yang JY and Chang CJ:
Epithelial-Mesenchymal transition directs stem cell polarity via
regulation of mitofusin. Cell Metab. 29:993–1002 e6. 2019.
View Article : Google Scholar
|
43
|
Whelan KA, Chandramouleeswaran PM, Tanaka
K, Natsuizaka M, Guha M, Srinivasan S, Darling DS, Kita Y, Natsugoe
S, Winkler JD, et al: Autophagy supports generation of cells with
high CD44 expression via modulation of oxidative stress and
Parkin-mediated mitochondrial clearance. Oncogene. 36:4843–4858.
2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Duyndam MC, van Berkel MP, Dorsman JC,
Rockx DA, Pinedo HM and Boven E: Cisplatin and doxorubicin repress
Vascular Endothelial Growth Factor expression and differentially
down-regulate Hypoxia-inducible Factor I activity in human ovarian
cancer cells. Biochem Pharmacol. 74:191–201. 2007. View Article : Google Scholar : PubMed/NCBI
|