|
1
|
Vallée A and Lecarpentier Y: Curcumin and
endometriosis. Int J Mol Sci. 21:24402020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chapron C, Marcellin L, Borghese B and
Santulli P: Rethinking mechanisms, diagnosis and management of
endometriosis. Nat Rev Endocrinol. 15:666–682. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Singh N, Lata K, Naha M, Malhotra N,
Tiwari A and Vanamail P: Effect of endometriosis on implantation
rates when compared to tubal factor in fresh non donor in vitro
fertilization cycles. J Hum Reprod Sci. 7:143–147. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Scutiero G, Iannone P, Bernardi G,
Bonaccorsi G, Spadaro S, Volta CA, Greco P and Nappi L: Oxidative
stress and endometriosis: A systematic review of the literature.
Oxid Med Cell Longev. 2017:72652382017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bellelis P, Dias JA Jr, Podgaec S,
Gonzales M, Baracat EC and Abrão MS: Epidemiological and clinical
aspects of pelvic endometriosis-a case series. Rev Assoc Med Bras
(1992). 56:467–471. 2010.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Signorile PG and Baldi A: Endometriosis:
New concepts in the pathogenesis. Int J Biochem Cell Biol.
42:778–780. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Taylor HS, Kotlyar AM and Flores VA:
Endometriosis is a chronic systemic disease: Clinical challenges
and novel innovations. Lancet. 397:839–852. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Seli E, Berkkanoglu M and Arici A:
Pathogenesis of endometriosis. Obstet Gynecol Clin North Am.
30:41–61. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Marsh EE and Laufer MR: Endometriosis in
premenarcheal girls who do not have an associated obstructive
anomaly. Fertil Steril. 83:758–760. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Signorile PG, Baldi F, Bussani R,
D'Armiento M, De Falco M and Baldi A: Ectopic endometrium in human
foetuses is a common event and sustains the theory of müllerianosis
in the pathogenesis of endometriosis, a disease that predisposes to
cancer. J Exp Clin Cancer Res. 28:492009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Benagiano G and Brosens I: History of
adenomyosis. Best Pract Res Clin Obstet Gynaecol. 20:449–463. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bulun SE, Yilmaz BD, Sison C, Miyazaki K,
Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M and Wei J:
Endometriosis. Endocr Rev. 40:1048–1079. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Augoulea A, Mastorakos G, Lambrinoudaki I,
Christodoulakos G and Creatsas G: The role of the oxidative-stress
in the endometriosis-related infertility. Gynecol Endocrinol.
25:75–81. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gupta S, Goldberg JM, Aziz N, Goldberg E,
Krajcir N and Agarwal A: Pathogenic mechanisms in
endometriosis-associated infertility. Fertil Steril. 90:247–257.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Van Langendonckt A, Casanas-Roux F and
Donnez J: Oxidative stress and peritoneal endometriosis. Fertil
Steril. 77:861–870. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cacciottola L, Donnez J and Dolmans MM:
Can endometriosis-related oxidative stress pave the way for new
treatment targets? Int J Mol Sci. 22:71382021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Halliwell B: Biochemistry of oxidative
stress. Biochem Soc Trans. 35:1147–1150. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Carvalho LF, Samadder AN, Agarwal A,
Fernandes LF and Abrão MS: Oxidative stress biomarkers in patients
with endometriosis: Systematic review. Arch Gynecol Obstet.
286:1033–1040. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mukherjee A, Ghosh KK, Chakrabortty S,
Gulyás B, Padmanabhan P and Ball WB: Mitochondrial reactive oxygen
species in infection and immunity. Biomolecules. 14:6702024.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dröge W: Free radicals in the
physiological control of cell function. Physiol Rev. 82:47–95.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nasiri N, Moini A, Eftekhari-Yazdi P,
Karimian L, Salman-Yazdi R and Arabipoor A: Oxidative stress
statues in serum and follicular fluid of women with endometriosis.
Cell J. 18:582–587. 2017.PubMed/NCBI
|
|
22
|
Prieto L, Quesada JF, Cambero O, Pacheco
A, Pellicer A, Codoceo R and Garcia-Velasco JA: Analysis of
follicular fluid and serum markers of oxidative stress in women
with infertility related to endometriosis. Fertil Steril.
98:126–130. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Turkyilmaz E, Yildirim M, Cendek BD, Baran
P, Alisik M, Dalgaci F and Yavuz AF: Evaluation of oxidative stress
markers and intra-extracellular antioxidant activities in patients
with endometriosis. Eur J Obstet Gynecol Reprod Biol. 199:164–168.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ekarattanawong S, Tanprasertkul C,
Somprasit C, Chamod P, Tiengtip R, Bhamarapravatana K and
Suwannarurk K: Possibility of using superoxide dismutase and
glutathione peroxidase as endometriosis biomarkers. Int J Womens
Health. 9:711–716. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ota H, Igarashi S, Sato N, Tanaka H and
Tanaka T: Involvement of catalase in the endometrium of patients
with endometriosis and adenomyosis. Fertil Steril. 78:804–809.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lioudaki S, Verikokos C, Kouraklis G,
Ioannou C, Chatziioannou E, Perrea D and Klonaris C: Paraoxonase-1:
Characteristics and role in atherosclerosis and carotid artery
disease. Curr Vasc Pharmacol. 17:141–146. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Verit FF, Erel O and Celik N: Serum
paraoxonase-1 activity in women with endometriosis and its
relationship with the stage of the disease. Hum Reprod. 23:100–104.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nam TG: Lipid peroxidation and its
toxicological implications. Toxicol Res. 27:1–6. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mier-Cabrera J, Jiménez-Zamudio L,
García-Latorre E, Cruz-Orozco O and Hernández-Guerrero C:
Quantitative and qualitative peritoneal immune profiles, T-cell
apoptosis and oxidative stress-associated characteristics in women
with minimal and mild endometriosis. BJOG. 118:6–16. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hayashi S, Nakamura T, Motooka Y, Ito F,
Jiang L, Akatsuka S, Iwase A, Kajiyama H, Kikkawa F and Toyokuni S:
Novel ovarian endometriosis model causes infertility via
iron-mediated oxidative stress in mice. Redox Biol. 37:1017262020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Várnagy Á, Kőszegi T, Györgyi E, Szegedi
S, Sulyok E, Prémusz V and Bódis J: Levels of total antioxidant
capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular
fluid in women undergoing in vitro fertilization: Focusing on
endometriosis. Hum Fertil (Camb). 23:200–208. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Da Broi MG, de Albuquerque FO, de Andrade
AZ, Cardoso RL, Junior AA and Navarro PA: Increased concentration
of 8-hydroxy-2′-deoxyguanosine in follicular fluid of infertile
women with endometriosis. Cell Tissue Res. 366:231–242. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Staniek K, Gille L, Kozlov AV and Nohl H:
Mitochondrial superoxide radical formation is controlled by
electron bifurcation to the high and low potential pathways. Free
Radic Res. 36:381–387. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Khashchenko EP, Vysokikh MY, Marey MV,
Sidorova KO, Manukhova LA, Shkavro NN, Uvarova EV, Chuprynin VD,
Fatkhudinov TK, Adamyan LV and Sukhikh GT: Altered glycolysis,
mitochondrial biogenesis, autophagy and apoptosis in peritoneal
endometriosis in adolescents. Int J Mol Sci. 25:42382024.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen Y, Zhang J, Lin Y, Lei Q, Guan KL,
Zhao S and Xiong Y: Tumour suppressor SIRT3 deacetylates and
activates manganese superoxide dismutase to scavenge ROS. EMBO Rep.
12:534–541. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ota H, Igarashi S, Hatazawa J and Tanaka
T: Immunohistochemical assessment of superoxide dismutase
expression in the endometrium in endometriosis and adenomyosis.
Fertil Steril. 72:129–134. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen C, Zhou Y, Hu C, Wang Y, Yan Z, Li Z
and Wu R: Mitochondria and oxidative stress in ovarian
endometriosis. Free Radic Biol Med. 136:22–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jendrach M, Mai S, Pohl S, Vöth M and
Bereiter-Hahn J: Short- and long-term alterations of mitochondrial
morphology, dynamics and mtDNA after transient oxidative stress.
Mitochondrion. 8:293–304. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pelicano H, Carney D and Huang P: ROS
stress in cancer cells and therapeutic implications. Drug Resist
Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cogliati S, Enriquez JA and Scorrano L:
Mitochondrial cristae: Where beauty meets functionality. Trends
Biochem Sci. 41:261–273. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen CL, Zhang L, Jin Z, Kasumov T and
Chen YR: Mitochondrial redox regulation and myocardial
ischemia-reperfusion injury. Am J Physiol Cell Physiol.
322:C12–C23. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Musatov A and Robinson NC: Susceptibility
of mitochondrial electron-transport complexes to oxidative damage.
Focus on cytochrome c oxidase. Free Radic Rese. 46:1313–1326. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Turrens JF and Boveris A: Generation of
superoxide anion by the NADH dehydrogenase of bovine heart
mitochondria. Biochem J. 191:421–427. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Guo C, Sun L, Chen X and Zhang D:
Oxidative stress, mitochondrial damage and neurodegenerative
diseases. Neural Regen Res. 8:2003–2014. 2013.PubMed/NCBI
|
|
45
|
Cho S, Lee YM, Choi YS, Yang HI, Jeon YE,
Lee KE, Lim K, Kim HY, Seo SK and Lee BS: Mitochondria DNA
polymorphisms are associated with susceptibility to endometriosis.
DNA Cell Biol. 31:317–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Webb BD, Diaz GA and Prasun P:
Mitochondrial translation defects and human disease. J Transl Genet
Genom. 4:71–80. 2020.PubMed/NCBI
|
|
47
|
Govatati S, Deenadayal M, Shivaji S and
Bhanoori M: Mitochondrial NADH:Ubiquinone oxidoreductase
alterations are associated with endometriosis. Mitochondrion.
13:782–790. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shin MG, Kim HJ, Kim HR, Lee IK, Cho D,
Kee SJ, Kook H, Hwang TJ, Shin JH, Suh SP and Ryang MD: Impaired
activity of mitochondrial respiratory chain enzyme complexes and
mitochondrial genomic aberrations in leukemia cells from patients
with acute myeloid leukemia. Blood. 108:19182006. View Article : Google Scholar
|
|
49
|
Defrère S, Lousse JC, González-Ramos R,
Colette S, Donnez J and Van Langendonckt A: Potential involvement
of iron in the pathogenesis of peritoneal endometriosis. Mol Hum
Reprod. 14:377–385. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Benjamín-Rivera JA, Otero MP and Tinoco
AD: Reinforcing protein biochemistry: A two-week experiment
studying iron(III) binding by the transferrin protein through
stoichiometric determination, stability analysis, and visualization
of the binding site. J Chem Educ. 101:1656–1664. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Alvarado-Díaz CP, Núñez MT, Devoto L and
González-Ramos R: Endometrial expression and in vitro modulation of
the iron transporter divalent metal transporter-1: Implications for
endometriosis. Fertil Steril. 106:393–401. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Woo JH, Choi YS and Choi JH: Iron-storage
protein ferritin is upregulated in endometriosis and iron overload
contributes to a migratory phenotype. Biomedicines. 8:4542020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Benaglia L, Paffoni A, Mangiarini A,
Restelli L, Bettinardi N, Somigliana E, Vercellini P and Fedele L:
Intrafollicular iron and ferritin in women with ovarian
endometriomas. Acta Obstet Gynecol Scand. 94:646–653. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Van Langendonckt A, Casanas-Roux F,
Eggermont J and Donnez J: Characterization of iron deposition in
endometriotic lesions induced in the nude mouse model. Hum Reprod.
19:1265–1271. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pascolo L, Pachetti M, Camillo A,
Cernogoraz A, Rizzardi C, Mikus KV, Zanconati F, Salomé M, Suárez
VT, Romano F, et al: Detention and mapping of iron and toxic
environmental elements in human ovarian endometriosis: A suggested
combined role. Sci Total Environ. 864:1610282023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stowell SB, Wiley CM, Perez-Reyes N and
Powers CN: Cytologic diagnosis of peritoneal fluids. Applicability
to the laparoscopic diagnosis of endometriosis. Acta Cytol.
41:817–822. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lousse JC, Defrère S, Van Langendonckt A,
Gras J, González-Ramos R, Colette S and Donnez J: Iron storage is
significantly increased in peritoneal macrophages of endometriosis
patients and correlates with iron overload in peritoneal fluid.
Fertil Steril. 91:1668–1675. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Recalcati S and Cairo G: Macrophages and
iron: A special relationship. Biomedicines. 9:15852021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kondo H, Saito K, Grasso JP and Aisen P:
Iron metabolism in the erythrophagocytosing Kupffer cell.
Hepatology. 8:32–38. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Iwabuchi T, Yoshimoto C, Shigetomi H and
Kobayashi H: Oxidative stress and antioxidant defense in
endometriosis and its malignant transformation. Oxid Med Cell
Longev. 2015:8485952015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Králíčková M, Losan P and Vetvicka V:
Endometriosis and cancer. Women's Health (Lond). 10:591–597. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B,
Jiang L and Liu K: Research advances in endometriosis-related
signaling pathways: A review. Biomed Pharmacother. 164:1149092023.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wen Y, Fan L, Pang L, Zhao T, Li R, Zhang
Y, Zhang L and Yang W: NeiyiKangfu tablets control the progression
of endometriosis through inhibiting RAF/MEK/ERK signal pathway by
targeting RKIP. Gynecol Endocrinol. 38:1136–1146. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kim BY, Han MJ and Chung AS: Effects of
reactive oxygen species on proliferation of Chinese hamster lung
fibroblast (V79) cells. Free Radic Biol Med. 30:686–698. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jiménez LA, Zanella C, Fung H, Janssen YM,
Vacek P, Charland C, Goldberg J and Mossman BT: Role of
extracellular signal-regulated protein kinases in apoptosis by
asbestos and H2O2. Am J Physiol. 273:L1029–L1035. 1997.PubMed/NCBI
|
|
66
|
Cho YJ, Park SB and Han M:
Di-(2-ethylhexyl)-phthalate induces oxidative stress in human
endometrial stromal cells in vitro. Mol Cell Endocrinol. 407:9–17.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Olea-Flores M, Zuñiga-Eulogio MD,
Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E,
Ortuño-Pineda C, Padilla-Benavides T and Navarro-Tito N:
Extracellular-Signal regulated kinase: A central molecule driving
epithelial-mesenchymal transition in cancer. Int J Mol Sci.
20:28852019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ullah R, Yin Q, Snell AH and Wan L:
RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer
Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dérijard B, Raingeaud J, Barrett T, Wu IH,
Han J, Ulevitch RJ and Davis RJ: Independent human MAP-kinase
signal transduction pathways defined by MEK and MKK isoforms.
Science. 267:682–685. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wu X, Noh SJ, Zhou G, Dixon JE and Guan
KL: Selective activation of MEK1 but not MEK2 by A-Raf from
epidermal growth factor-stimulated hela cells. J Biol Chem.
271:3265–3271. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Terrell EM and Morrison DK: Ras-Mediated
activation of the raf family kinases. Cold Spring Harb Perspect
Med. 9:a0337462019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Marshall M: Interactions between Ras and
Raf: Key regulatory proteins in cellular transformation. Mol Reprod
Dev. 42:493–499. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ushio-Fukai M, Griendling KK, Becker PL,
Hilenski L, Halleran S and Alexander RW: Epidermal growth factor
receptor transactivation by angiotensin II requires reactive oxygen
species in vascular smooth muscle cells. Arterioscler Thromb Vasc
Biol. 21:489–495. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ghosh M, Wang H, Kelley GG and Smrcka AV:
Purification of phospholipase C beta and phospholipase C epsilon
from Sf9 cells. Methods Mol Biol. 237:55–64. 2004.PubMed/NCBI
|
|
75
|
Rijkers GT, Henriquez NV and Griffioen AW:
Intracellular magnesium movements and lymphocyte activation. Magnes
Res. 6:205–213. 1993.PubMed/NCBI
|
|
76
|
Kolch W, Heidecker G, Kochs G, Hummel R,
Vahidi H, Mischak H, Finkenzeller G, Marmé D and Rapp UR: Protein
kinase C alpha activates RAF-1 by direct phosphorylation. Nature.
364:249–252. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lee MW and Severson DL: Signal
transduction in vascular smooth muscle: Diacylglycerol second
messengers and PKC action. Am J Physiol. 267:C659–C678. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Codreanu SG, Adams DG, Dawson ES,
Wadzinski BE and Liebler DC: Inhibition of protein phosphatase 2a
activity by selective electrophile alkylation damage. Biochemistry.
45:10020–10029. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sunahori K, Nagpal K, Hedrich CM, Mizui M,
Fitzgerald LM and Tsokos GC: The catalytic subunit of protein
phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing
the phosphorylated mitogen-activated protein kinase/extracellular
signal-regulated kinase (ERK) kinase (MEK)/Phosphorylated ERK/DNMT1
protein pathway in T-cells from controls and systemic lupus
erythematosus patients. J Biol Chem. 288:21936–21944. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhuang S and Schnellmann RG: A
death-promoting role for extracellular signal-regulated kinase. J
Pharmacol Exp Ther. 319:991–997. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen Q, Hang Y, Zhang T, Tan L, Li S and
Jin Y: USP10 promotes proliferation and migration and inhibits
apoptosis of endometrial stromal cells in endometriosis through
activating the Raf-1/MEK/ERK pathway. Am J Physiol Cell Physiol.
315:C863–C872. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Leconte M, Nicco C, Ngô C, Chéreau C,
Chouzenoux S, Marut W, Guibourdenche J, Arkwright S, Weill B,
Chapron C, et al: The mTOR/AKT inhibitor temsirolimus prevents deep
infiltrating endometriosis in mice. Am J Pathol. 179:880–889. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pópulo H, Lopes JM and Soares P: The mtor
signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yilmaz HBC, Sulaiman M, Isik OA and
Cizmecioglu O: Class IA PI3K isoforms lead to differential
signalling downstream of PKB/Akt. Turk J Biochem. 49:210–219. 2024.
View Article : Google Scholar
|
|
85
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of Akt/PKB by the
Rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Cai SL, Tee AR, Short JD, Bergeron JM, Kim
J, Shen J, Guo R, Johnson CL, Kiguchi K and Walker CL: Activity of
TSC2 is inhibited by AKT-mediated phosphorylation and membrane
partitioning. J Cell Biol. 173:279–289. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Huang J and Manning BD: A complex
interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc
Trans. 37:217–222. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Proud CG: mTORC1 regulates the efficiency
and cellular capacity for protein synthesis. Biochem Soc Trans.
41:923–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hong S, Zhao B, Lombard DB, Fingar DC and
Inoki K: Cross-talk between sirtuin and mammalian target of
rapamycin complex 1 (mTORC1) signaling in the regulation of S6
kinase 1 (S6K1) phosphorylation. J Biol Chem. 289:13132–13141.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hahn-Windgassen A, Nogueira V, Chen CC,
Skeen JE, Sonenberg N and Hay N: Akt activates the mammalian target
of rapamycin by regulating cellular ATP level and AMPK activity. J
Biol Chem. 280:32081–32089. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Shaw RJ: LKB1 and AMP-activated protein
kinase control of mTOR signalling and growth. Acta Physiol (Oxf).
196:65–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kma L and Baruah TJ: The interplay of ROS
and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl
Biochem. 69:248–264. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Östman A, Frijhoff J, Sandin Å and Böhmer
FD: Regulation of protein tyrosine phosphatases by reversible
oxidation. J Biochem. 150:345–356. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jang JY, Min JH, Chae YH, Baek JY, Wang
SB, Park SJ, Oh GT, Lee SH, Ho YS and Chang TS: Reactive oxygen
species play a critical role in collagen-induced platelet
activation via SHP-2 oxidation. Antioxid Redox Signal.
20:2528–2540. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Makker A, Goel MM and Mahdi AA:
PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction,
and infertility: An update. J Mol Endocrinol. 53:R103–R118. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huu TN, Park J, Zhang Y, Park I, Yoon HJ,
Woo HA and Lee SR: Redox regulation of PTEN by peroxiredoxins.
Antioxidants (Basel). 10:3022021. View Article : Google Scholar
|
|
97
|
Lee SR, Yang KS, Kwon J, Lee C, Jeong W
and Rhee SG: Reversible inactivation of the tumor suppressor PTEN
by H202. J Biol Chem. 277:20336–20342. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Blanco-Aparicio C, Renner O, Leal JFM and
Carnero A: PTEN, more than the AKT pathway. Carcinogenesis.
28:1379–1386. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY
and Chiang CW: Regulation of phosphorylation of Thr-308 of akt,
cell proliferation, and survival by the B55alpha regulatory subunit
targeting of the protein phosphatase 2A holoenzyme to akt. J Biol
Chem. 283:1882–1892. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shimura T, Sasatani M, Kamiya K, Kawai H,
Inaba Y and Kunugita N: Mitochondrial reactive oxygen species
perturb AKT/cyclin D1 cell cycle signaling via oxidative
inactivation of PP2A in lowdose irradiated human fibroblasts.
Oncotarget. 7:3559–3570. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Makker A, Goel MM, Das V and Agarwal A:
PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian
syndrome, uterine leiomyomas and endometriosis: An update. Gynecol
Endocrinol. 28:175–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Arosh JA, Sivakumar KK, Lee J and Banu SK:
Effects of selective inhibition of prostaglandin E2 receptors EP2
and EP4 on the miRNA profile in endometriosis. Mol Cell Endocrinol.
558:1117282022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang Y, Zhu L, Kuokkanen S and Pollard JW:
Activation of protein synthesis in mouse uterine epithelial cells
by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling
pathway. Proc Natl Acad Sci USA. 112:E1382–E1391. 2015.PubMed/NCBI
|
|
104
|
Cinar O, Seval Y, Uz YH, Cakmak H, Ulukus
M, Kayisli UA and Arici A: Differential regulation of Akt
phosphorylation in endometriosis. Reprod Biomed Online. 19:864–871.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Laudanski P, Szamatowicz J, Kowalczuk O,
Kuźmicki M, Grabowicz M and Chyczewski L: Expression of selected
tumor suppressor and oncogenes in endometrium of women with
endometriosis. Hum Reprod. 24:1880–1890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang H, Li M, Zheng X, Sun Y, Wen Z and
Zhao X: Endometriotic stromal cells lose the ability to regulate
cell-survival signaling in endometrial epithelial cells in vitro.
Mol Hum Reprod. 15:653–663. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Marquardt RM, Tran DN, Lessey BA, Rahman
MS and Jeong JW: Epigenetic dysregulation in endometriosis:
Implications for pathophysiology and therapeutics. Endocr Rev.
44:1074–1095. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Smolarz B, Szyłło K and Romanowicz H:
Endometriosis: Epidemiology, classification, pathogenesis,
treatment and genetics (Review of Literature). Int J Mol Sci.
22:105542021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Szukiewicz D: Epigenetic regulation and
T-cell responses in endometriosis-something other than
autoimmunity. Front Immunol. 13:9438392022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Redi CA and Garagna S: Chromosome
variability and germ cell development in the house mouse.
Andrologia. 24:11–16. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Garnica AB: The role of the molecular
genetic approach in the pathogenesis of endometriosis. Molecular
bases of endometriosis. Giovana Aparecida G: IntechOpen; Rijeka: p
Ch 2. 2019
|
|
112
|
Li J, Wang W, Zhang Y, Cieślik M, Guo J,
Tan M, Green MD, Wang W, Lin H, Li W, et al: Epigenetic driver
mutations in ARID1A shape cancer immune phenotype and
immunotherapy. J Clin Invest. 130:2712–2726. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Reske JJ, Wilson MR, Holladay J, Siwicki
RA, Skalski H, Harkins S, Adams M, Risinger JI, Hostetter G, Lin K
and Chandler RL: Co-existing TP53 and ARID1A mutations promote
aggressive endometrial tumorigenesis. PLoS Genet. 17:e10099862021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Mathur R: ARID1A loss in cancer: Towards a
mechanistic understanding. Pharmacol Ther. 190:15–23. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Maeda D and Shih IM: Pathogenesis and the
role of ARID1A mutation in endometriosis-related ovarian neoplasms.
Adv Anat Pathol. 20:45–52. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Winarto H, Tan MI, Sadikin M and Wanandi
SI: ARID1A Expression is down-regulated by oxidative stress in
endometriosis and endometriosis-associated ovarian cancer. Transl
Oncogenomics. 9:11772727166898182017.PubMed/NCBI
|
|
117
|
Yamamoto S, Tsuda H, Takano M, Tamai S and
Matsubara O: Loss of ARID1A protein expression occurs as an early
event in ovarian clear-cell carcinoma development and frequently
coexists with PIK3CA mutations. Mod Pathol. 25:615–624. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wilson MR, Reske JJ, Holladay J, Wilber
GE, Rhodes M, Koeman J, Adams M, Johnson B, Su RW, Joshi NR, et al:
ARID1A and PI3-kinase pathway mutations in the endometrium drive
epithelial transdifferentiation and collective invasion. Nat
Commun. 10:35542019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kim HI, Kim TH, Yoo JY, Young SL, Lessey
BA, Ku BJ and Jeong JW: ARID1A and PGR proteins interact in the
endometrium and reveal a positive correlation in endometriosis.
Biochem Biophys Res Commun. 550:151–157. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri
S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, et al:
ARID1A is essential for endometrial function during early
pregnancy. PLoS Genet. 11:e10055372015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sekhon LH and Agarwal A: Endometriosis and
oxidative stress. Studies on Women's Health. Agarwal A, Aziz N and
Rizk B: Humana Press; Totowa, NJ: pp. 149–167. 2013, View Article : Google Scholar
|
|
122
|
Cottier H, Hodler J and Kraft R: Oxidative
STress: Pathogenetic mechanisms. Forschende Komplementärmedizin.
2:233–239. 2009.
|
|
123
|
Clower L, Fleshman T, Geldenhuys WJ and
Santanam N: Targeting oxidative stress involved in endometriosis
and its pain. Biomolecules. 12:10552022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Santanam N, Kavtaradze N, Murphy A,
Dominguez C and Parthasarathy S: Antioxidant supplementation
reduces endometriosis-related pelvic pain in humans. Transl Res.
161:189–195. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Facchin F, Barbara G, Saita E, Mosconi P,
Roberto A, Fedele L and Vercellini P: Impact of endometriosis on
quality of life and mental health: Pelvic pain makes the
difference. J Psychosom Obstet Gynaecol. 36:135–141. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Anastasi E, Fuggetta E, De Vito C,
Migliara G, Viggiani V, Manganaro L, Granato T, Panici PB, Angeloni
A and Porpora MG: Low levels of 25-OH vitamin D in women with
endometriosis and associated pelvic pain. Clin Chem Lab Med.
55:e282–e284. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Mehdizadehkashi A, Rokhgireh S,
Tahermanesh K, Eslahi N, Minaeian S and Samimi M: The effect of
vitamin D supplementation on clinical symptoms and metabolic
profiles in patients with endometriosis. Gynecol Endocrinol.
37:640–645. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Almassinokiani F, Khodaverdi S,
Solaymani-Dodaran M, Akbari P and Pazouki A: Effects of vitamin D
on endometriosis-related pain: A double-blind clinical trial. Med
Sci Monit. 22:4960–4966. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Mier-Cabrera J, Genera-García M, De la
Jara-Díaz J, Perichart-Perera O, Vadillo-Ortega F and
Hernández-Guerrero C: Effect of vitamins C and E supplementation on
peripheral oxidative stress markers and pregnancy rate in women
with endometriosis. Int J Gynaecol Obstet. 100:252–256. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Bayu P and Wibisono JJ: Vitamin C and E
antioxidant supplementation may significantly reduce pain symptoms
in endometriosis: A systematic review and meta-analysis of
randomized controlled trials. PLoS One. 19:e03018672024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Bina F, Soleymani S, Toliat T,
Hajimahmoodi M, Tabarrai M, Abdollahi M and Rahimi R: Plant-derived
medicines for treatment of endometriosis: A comprehensive review of
molecular mechanisms. Pharmacol Res. 139:76–90. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Markowska A, Antoszczak M, Markowska J and
Huczyński A: The role of selected dietary factors in the
development and course of endometriosis. Nutrients. 15:27732023.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Swarnakar S and Paul S: Curcumin arrests
endometriosis by downregulation of matrix metalloproteinase-9
activity. Indian J Biochem Biophys. 46:59–65. 2009.PubMed/NCBI
|
|
134
|
Zhang J, Cui H, Yin J, Wang Y, Zhao Y, Yu
J and Engelhardt UH: Separation and antioxidant activities of new
acetylated EGCG compounds. Sci Rep. 13:209642023. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Matsuzaki S and Darcha C: Antifibrotic
properties of epigallocatechin-3-gallate in endometriosis. Hum
Reprod. 29:1677–1687. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Frémont L: Biological effects of
resveratrol. Life Sci. 66:663–673. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Wang C, Chen Z, Zhao X, Lin C, Hong S, Lou
Y, Shi X, Zhao M, Yang X, Guan MX and Xi Y: Transcriptome-Based
analysis reveals therapeutic effects of resveratrol on
endometriosis in aRat model. Drug Des Devel Ther. 15:4141–4155.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Tseng V, Sutliff RL and Hart CM: Redox
biology of peroxisome proliferator-activated receptor-γ in
pulmonary hypertension. Antioxid Redox Signal. 31:874–897. 2019.
View Article : Google Scholar : PubMed/NCBI
|