1
|
Group UCSW: United States Cancer
Statistics: 1999–2005 Incidence and mortality Web-based report,
2009.
|
2
|
Sher YP, Shih JY, Yang PC, et al:
Prognosis of non-small cell lung cancer patients by detecting
circulating cancer cells in the peripheral blood with multiple
marker genes. Clin Cancer Res. 11:173–179. 2005.PubMed/NCBI
|
3
|
Petersen I and Petersen S: Towards a
genetic-based classification of human lung cancer. Anal Cell
Pathol. 22:111–121. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lu Y, Lemon W, Liu PY, et al: A gene
expression signature predicts survival of patients with stage I
non-small cell lung cancer. PLoS Med. 3:e4672006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Boeri M, Verri C, Conte D, et al: MicroRNA
signatures in tissues and plasma predict development and prognosis
of computed tomography detected lung cancer. Proc Natl Acad Sci
USA. 108:3713–3718. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Netzel-Arnett S, Hooper JD, Szabo R, et
al: Membrane anchored serine proteases: a rapidly expanding group
of cell surface proteolytic enzymes with potential roles in cancer.
Cancer Metastasis Rev. 22:237–258. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gress TM, Wallrapp C, Frohme M, et al:
Identification of genes with specific expression in pancreatic
cancer by cDNA representational difference analysis. Genes
Chromosomes Cancer. 19:97–103. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wallrapp C, Hahnel S, Muller-Pillasch F,
et al: A novel transmembrane serine protease (TMPRSS3)
overexpressed in pancreatic cancer. Cancer Res. 60:2602–2606.
2000.PubMed/NCBI
|
9
|
Butterworth MB, Edinger RS, Frizzell RA
and Johnson JP: Regulation of the epithelial sodium channel by
membrane trafficking. Am J Physiol Renal Physiol. 296:F10–F24.
2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bhalla V and Hallows KR: Mechanisms of
ENaC regulation and clinical implications. J Am Soc Nephrol.
19:1845–1854. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Grutzmann R, Pilarsky C, Ammerpohl O, et
al: Gene expression profiling of microdissected pancreatic ductal
carcinomas using high-density DNA microarrays. Neoplasia.
6:611–622. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Iacobuzio-Donahue CA, Ashfaq R, Maitra A,
et al: Highly expressed genes in pancreatic ductal adenocarcinomas:
a comprehensive characterization and comparison of the
transcription profiles obtained from three major technologies.
Cancer Res. 63:8614–8622. 2003.
|
13
|
Kebebew E, Peng M, Reiff E, Duh QY, Clark
OH and McMillan A: ECM1 and TMPRSS4 are diagnostic markers of
malignant thyroid neoplasms and improve the accuracy of fine needle
aspiration biopsy. Ann Surg. 242:353–361. 2005.PubMed/NCBI
|
14
|
Ma XJ, Patel R, Wang X, et al: Molecular
classification of human cancers using a 92-gene real-time
quantitative polymerase chain reaction assay. Arch Pathol Lab Med.
130:465–473. 2006.PubMed/NCBI
|
15
|
Riker AI, Enkemann SA, Fodstad O, et al:
The gene expression profiles of primary and metastatic melanoma
yields a transition point of tumor progression and metastasis. BMC
Med Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Larzabal L, Nguewa PA, Pio R, et al:
Overexpression of TMPRSS4 in non-small cell lung cancer is
associated with poor prognosis in patients with squamous histology.
Br J Cancer. 105:1608–1614. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jung H, Lee KP, Park SJ, et al: TMPRSS4
promotes invasion, migration and metastasis of human tumor cells by
facilitating an epithelial-mesenchymal transition. Oncogene.
27:2635–2647. 2008. View Article : Google Scholar
|
18
|
Kim S, Kang HY, Nam EH, et al: TMPRSS4
induces invasion and epithelial-mesenchymal transition through
upregulation of integrin {alpha}5 and its signaling pathways.
Carcinogenesis. 31:597–606. 2010.PubMed/NCBI
|
19
|
Li T, Zeng ZC, Wang L, et al: Radiation
enhances long-term metastasis potential of residual hepatocellular
carcinoma in nude mice through TMPRSS4-induced
epithelial-mesenchymal transition. Cancer Gene Ther. 18:617–626.
2011. View Article : Google Scholar
|
20
|
Hermanson GT: Bioconjugate Techniques.
Academic Press; San Diego: 2008
|
21
|
Kyte J and Doolittle RF: A simple method
for displaying the hydropathic character of a protein. J Mol Biol.
157:105–132. 1982. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kivela AJ, Parkkila S, Saarnio J, et al:
Expression of transmembrane carbonic anhydrase isoenzymes IX and
XII in normal human pancreas and pancreatic tumours. Histochem Cell
Biol. 114:197–204. 2000.PubMed/NCBI
|
23
|
Juhasz M, Chen J, Lendeckel U, et al:
Expression of carbonic anhydrase IX in human pancreatic cancer.
Aliment Pharmacol Ther. 18:837–846. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nguyen TH, Havari E, Connors T, et al:
Cancer cells expressing TMPRSS4 colocalized with carbonic anhydrase
IX (CAIX)-positive cells in lung and pancreatic carcinomas. Mol
Cancer Ther. 8:C1662009. View Article : Google Scholar
|
25
|
Jia JB, Wang WQ, Sun HC, et al: A novel
tripeptide, tyroserleutide, inhibits irradiation-induced
invasiveness and metastasis of hepatocellular carcinoma in nude
mice. Invest New Drugs. 29:861–872. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Giatromanolaki A, Koukourakis MI, Sivridis
E, et al: Expression of hypoxia-inducible carbonic anhydrase-9
relates to angiogenic pathways and independently to poor outcome in
non-small cell lung cancer. Cancer Res. 61:7992–7998.
2001.PubMed/NCBI
|
27
|
Egeblad M and Werb Z: New functions for
the matrix metalloproteinases in cancer progression. Nat Rev
Cancer. 2:161–174. 2002. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Szabo R, Wu Q, Dickson RB, Netzel-Arnett
S, Antalis TM and Bugge TH: Type II transmembrane serine proteases.
Thromb Haemost. 90:185–193. 2003.PubMed/NCBI
|
29
|
Chaipan C, Kobasa D, Bertram S, et al:
Proteolytic activation of the 1918 influenza virus hemagglutinin. J
Virol. 83:3200–3211. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Garcia-Caballero A, Dang Y, He H and
Stutts MJ: ENaC proteolytic regulation by channel-activating
protease 2. J Gen Physiol. 132:521–535. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kellenberger S and Schild L: Epithelial
sodium channel/degenerin family of ion channels: a variety of
functions for a shared structure. Physiol Rev. 82:735–767.
2002.PubMed/NCBI
|
32
|
Vuagniaux G, Vallet V, Jaeger NF, Hummler
E and Rossier BC: Synergistic activation of ENaC by three
membrane-bound channel-activating serine proteases (mCAP1, mCAP2,
and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in
Xenopus Oocytes. J Gen Physiol. 120:191–201. 2002. View Article : Google Scholar
|
33
|
Passero CJ, Mueller GM, Myerburg MM,
Carattino MD, Hughey RP and Kleyman TR: TMPRSS4-dependent
activation of the epithelial sodium channel requires cleavage of
the gamma subunit distal to the furin cleavage site. Am J Physiol
Renal Physiol. 302:F1–F8. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rossier BC: The epithelial sodium channel:
activation by membrane-bound serine proteases. Proc Am Thorac Soc.
1:4–9. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Planes C and Caughey GH: Regulation of the
epithelial Na+ channel by peptidases. Curr Top Dev Biol.
78:23–46. 2007. View Article : Google Scholar
|
36
|
Matsushita K, McCray PB Jr, Sigmund RD,
Welsh MJ and Stokes JB: Localization of epithelial sodium channel
subunit mRNAs in adult rat lung by in situ hybridization. Am J
Physiol. 271:L332–L339. 1996.PubMed/NCBI
|
37
|
Yamamura H, Ugawa S, Ueda T, Nagao M and
Shimada S: Protons activate the delta-subunit of the epithelial
Na+ channel in humans. J Biol Chem. 279:12529–12534.
2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yamamura H, Ugawa S, Ueda T and Shimada S:
Expression analysis of the epithelial Na+ channel delta
subunit in human melanoma G-361 cells. Biochem Biophys Res Commun.
366:489–492. 2008.PubMed/NCBI
|
39
|
Ji HL and Benos DJ: Degenerin sites
mediate proton activation of deltabetagamma-epithelial sodium
channel. J Biol Chem. 279:26939–26947. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wodopia R, Ko HS, Billian J, Wiesner R,
Bartsch P and Mairbaurl H: Hypoxia decreases proteins involved in
epithelial electrolyte transport in A549 cells and rat lung. Am J
Physiol Lung Cell Mol Physiol. 279:L1110–L1119. 2000.PubMed/NCBI
|
41
|
Bouvry D, Planes C, Malbert-Colas L,
Escabasse V and Clerici C: Hypoxia-induced cytoskeleton disruption
in alveolar epithelial cells. Am J Respir Cell Mol Biol.
35:519–527. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kebebew E, Peng M, Reiff E and McMillan A:
Diagnostic and extent of disease multigene assay for malignant
thyroid neoplasms. Cancer. 106:2592–2597. 2006. View Article : Google Scholar : PubMed/NCBI
|