Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines
- Authors:
- Claire H. Wilson
- Catherine A. Abbott
-
Affiliations: School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia - Published online on: June 19, 2012 https://doi.org/10.3892/ijo.2012.1522
- Pages: 919-932
This article is mentioned in:
Abstract
Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cho KR and Shih Ie M: Ovarian cancer. Annu Rev Pathol. 4:287–313. 2009. View Article : Google Scholar | |
Schnitt SJ: Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol. 23(Suppl 2): S60–S64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kurman RJ and Shih Ie M: Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol. 27:151–160. 2008.PubMed/NCBI | |
Lambeir AM, Durinx C, Scharpe S and De Meester I: Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 40:209–294. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bjelke JR, Christensen J, Nielsen PF, Branner S, Kanstrup AB, Wagtmann N and Rasmussen HB: Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. Biochem J. 396:391–399. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ajami K, Pitman MR, Wilson CH, Park J, Menz RI, Starr AE, Cox JH, Abbott CA, Overall CM and Gorrell MD: Stromal cell-derived factors 1alpha and 1beta, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8. FEBS Lett. 582:819–825. 2008. View Article : Google Scholar : PubMed/NCBI | |
Keane FM, Nadvi NA, Yao TW and Gorrell MD: Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-alpha. FEBS J. 278:1316–1332. 2011. View Article : Google Scholar : PubMed/NCBI | |
Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A and Grouzmann E: Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol. 166:433–442. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barbieri F, Bajetto A and Florio T: Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. J Oncol. 2010:4269562010. View Article : Google Scholar : PubMed/NCBI | |
Ali S and Lazennec G: Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev. 26:401–420. 2007. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F: Cancer and the chemokine network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar | |
Mentlein R: Dipeptidyl-peptidase IV (CD26): role in the inactivation of regulatory peptides. Regul Pept. 85:9–24. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sun YX, Pedersen EA, Shiozawa Y, Havens AM, Jung Y, Wang J, Pienta KJ and Taichman RS: CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis. 25:765–776. 2008. View Article : Google Scholar : PubMed/NCBI | |
Arscott WT, La Bauve AE, May V and Wesley UV: Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene. 28:479–491. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Tilan JU, Everhart L, Czarnecka M, Soldin SJ, Mendu DR, Jeha D, Hanafy J, Lee CK, Sun J, Izycka-Swiezczewska E, Toretsky JA and Kitlinska J: Dipeptidyl peptidases as survival factors in Ewing sarcoma family of tumors. J Biol Chem. 286:27494–27505. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu DM, Wang XM, McCaughan GW and Gorrell MD: Extra-enzymatic functions of the dipeptidyl peptidase IV-related proteins DP8 and DP9 in cell adhesion, migration and apoptosis. FEBS J. 273:2447–2460. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang XM, Yu DM, McCaughan GW and Gorrell MD: Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology. 42:935–945. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sulda ML, Abbott CA and Hildebrandt M: DPIV/CD26 and FAP in cancer: a tale of contradictions. Adv Exp Med Biol. 575:197–206. 2006. View Article : Google Scholar : PubMed/NCBI | |
Johnson RC, Zhu D, Augustin-Voss HG and Pauli BU: Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. J Cell Biol. 121:1423–1432. 1993. View Article : Google Scholar : PubMed/NCBI | |
Cheng HC, Abdel-Ghany M, Elble RC and Pauli BU: Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem. 273:24207–24215. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cheng HC, Abdel-Ghany M, Zhang S and Pauli BU: Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clin Exp Metastasis. 17:609–615. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kajiyama H, Kikkawa F, Suzuki T, Shibata K, Ino K and Mizutani S: Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res. 62:2753–2757. 2002.PubMed/NCBI | |
Kajiyama H, Shibata K, Ino K, Mizutani S, Nawa A and Kikkawa F: The expression of dipeptidyl peptidase IV (DPPIV/CD26) is associated with enhanced chemosensitivity to paclitaxel in epithelial ovarian carcinoma cells. Cancer Sci. 101:347–354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Garin-Chesa P, Old LJ and Rettig WJ: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA. 87:7235–7239. 1990. View Article : Google Scholar | |
Chen D, Kennedy A, Wang JY, Zeng W, Zhao Q, Pearl M, Zhang M, Suo Z, Nesland JM, Qiao Y, Ng AK, Hirashima N, Yamane T, Mori Y, Mitsumata M, Ghersi G and Chen WT: Activation of EDTA-resistant gelatinases in malignant human tumors. Cancer Res. 66:9977–9985. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA and Fearon DT: Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 330:827–830. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kelly T, Kechelava S, Rozypal TL, West KW and Korourian S: Seprase, a membrane-bound protease, is overexpressed by invasive ductal carcinoma cells of human breast cancers. Mod Pathol. 11:855–863. 1998.PubMed/NCBI | |
Ariga N, Sato E, Ohuchi N, Nagura H and Ohtani H: Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer. 95:67–72. 2001. View Article : Google Scholar | |
Goodman JD, Rozypal TL and Kelly T: Seprase, a membrane-bound protease, alleviates the serum growth requirement of human breast cancer cells. Clin Exp Metastasis. 20:459–470. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Wang S and Kelly T: Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res. 64:2712–2716. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kennedy A, Dong H, Chen D and Chen WT: Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer. 124:27–35. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abbott CA, Yu DM, Woollatt E, Sutherland GR, McCaughan GW and Gorrell MD: Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem. 267:6140–6150. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu DM, Yao TW, Chowdhury S, Nadvi NA, Osborne B, Church WB, McCaughan GW and Gorrell MD: The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J. 277:1126–1144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dubois V, Van Ginneken C, De Cock H, Lambeir AM, Van der Veken P, Augustyns K, Chen X, Scharpe S and De Meester I: Enzyme activity and immunohistochemical localization of dipeptidyl Peptidase 8 and 9 in male reproductive tissues. J Histochem Cytochem. 57:531–541. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yao TW, Kim WS, Yu DM, Sharbeen G, McCaughan GW, Choi KY, Xia P and Gorrell MD: A novel role of dipeptidyl peptidase 9 in epidermal growth factor signaling. Mol Cancer Res. 9:948–959. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sulda ML, Abbott CA, Macardle PJ, Hall RK and Kuss BJ: Expression and prognostic assessment of dipeptidyl peptidase IV and related enzymes in B-cell chronic lymphocytic leukemia. Cancer Biol Ther. 10:180–189. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu DM, Ajami K, Gall MG, Park J, Lee CS, Evans KA, McLaughlin EA, Pitman MR, Abbott CA, McCaughan GW and Gorrell MD: The in vivo expression of dipeptidyl peptidases 8 and 9. J Histochem Cytochem. 57:1025–1040. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stremenova J, Mares V, Lisa V, Hilser M, Krepela E, Vanickova Z, Syrucek M, Soula O and Sedo A: Expression of dipeptidyl peptidase-IV activity and/or structure homologs in human meningiomas. Int J Oncol. 36:351–358. 2010.PubMed/NCBI | |
Stremenova J, Krepela E, Mares V, Trim J, Dbaly V, Marek J, Vanickova Z, Lisa V, Yea C and Sedo A: Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade. Int J Oncol. 31:785–792. 2007.PubMed/NCBI | |
Soule HD, Vazguez J, Long A, Albert S and Brennan M: A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 51:1409–1416. 1973.PubMed/NCBI | |
Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A, Beauheim C, Harvey S, Ethier SP and Johnson PH: Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res. 61:5168–5178. 2001.PubMed/NCBI | |
Crow MJ, Grant G, Provenzale JM and Wax A: Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles. AJR Am J Roentgenol. 192:1021–1028. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lau KM, Mok SC and Ho SM: Expression of human estrogen receptor-alpha and -beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells. Proc Natl Acad Sci USA. 96:5722–5727. 1999. View Article : Google Scholar : PubMed/NCBI | |
Takai N, Jain A, Kawamata N, Popoviciu LM, Said JW, Whittaker S, Miyakawa I, Agus DB and Koeffler HP: 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer. 104:2701–2708. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Yu Y, Le XF, Boyer C, Mills GB and Bast RC: The outcome of heregulin-induced activation of ovarian cancer cells depends on the relative levels of HER-2 and HER-3 expression. Clin Cancer Res. 5:3653–3660. 1999.PubMed/NCBI | |
Hua W, Christianson T, Rougeot C, Rochefort H and Clinton GM: SKOV3 ovarian carcinoma cells have functional estrogen receptor but are growth-resistant to estrogen and antiestrogens. J Steroid Biochem Mol Biol. 55:279–289. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hu G, Liu W, Mendelsohn J, Ellis LM, Radinsky R, Andreeff M and Deisseroth AB: Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J Natl Cancer Inst. 89:1271–1276. 1997. View Article : Google Scholar : PubMed/NCBI | |
Monje P and Boland R: Expression and cellular localization of naturally occurring beta estrogen receptors in uterine and mammary cell lines. J Cell Biochem. 86:136–144. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lossos IS, Czerwinski DK, Wechser MA and Levy R: Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia. 17:789–795. 2003. View Article : Google Scholar : PubMed/NCBI | |
Maes MB, Dubois V, Brandt I, Lambeir AM, Van der Veken P, Augustyns K, Cheng JD, Chen X, Scharpe S and De Meester I: Dipeptidyl peptidase 8/9-like activity in human leukocytes. J Leukocyte Biol. 81:1252–1257. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abbott CA and Gorrell MD: The family of CD26/DPIV related ectopeptidases. Ectopeptidases: CD13/Aminopeptidase N and CD26/Dipeptidylpeptidase IV in Medicine and Biology. Langner J and Ansorge S: Kluwer/Plenum; New York: pp. 171–195. 2002, View Article : Google Scholar | |
Balaziova E, Busek P, Stremenova J, Sromova L, Krepela E, Lizcova L and Sedo A: Coupled expression of dipeptidyl peptidase-IV and fibroblast activation protein-alpha in transformed astrocytic cells. Mol Cell Biochem. 354:283–289. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ajami K, Abbott CA, McCaughan GW and Gorrell MD: Dipeptidyl peptidase 9 has two forms, a broad tissue distribution, cytoplasmic localization and DPIV-like peptidase activity. Biochim Biophys Acta. 1679:18–28. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pitman MR, Menz RI and Abbott CA: Hydrophilic residues surrounding the S1 and S2 pockets contribute to dimerisation and catalysis in human dipeptidyl peptidase 8 (DP8). Biol Chem. 391:959–972. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bank U, Heimburg A, Wohlfarth A, Koch G, Nordhoff K, Julius H, Helmuth M, Breyer D, Reinhold D, Tager M and Ansorge S: Outside or inside: role of the subcellular localization of DP4-like enzymes for substrate conversion and inhibitor effects. Biol Chem. 392:169–187. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ansorge S, Nordhoff K, Bank U, Heimburg A, Julius H, Breyer D, Thielitz A, Reinhold D and Tager M: Novel aspects of cellular action of dipeptidyl peptidase IV/CD26. Biol Chem. 392:153–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kikkawa F, Kajiyama H, Ino K, Shibata K and Mizutani S: Increased adhesion potency of ovarian carcinoma cells to mesothelial cells by overexpression of dipeptidyl peptidase IV. Int J Cancer. 105:779–783. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Simms AE, Mazur A, Wang S, Leon NR, Jones B, Aziz N and Kelly T: Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis. 28:567–579. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aertgeerts K, Levin I, Shi L, Snell GP, Jennings A, Prasad GS, Zhang Y, Kraus ML, Salakian S, Sridhar V, Wijnands R and Tennant MG: Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J Biol Chem. 280:19441–19444. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chiravuri M, Agarraberes F, Mathieu SL, Lee H and Huber BT: Vesicular localization and characterization of a novel post-proline-cleaving aminodipeptidase, quiescent cell proline dipeptidase. J Immunol. 165:5695–5702. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tang HK, Tang HY, Hsu SC, Chu YR, Chien CH, Shu CH and Chen X: Biochemical properties and expression profile of human prolyl dipeptidase DPP9. Arch Biochem Biophys. 485:120–127. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leiting B, Pryor KD, Wu JK, Marsilio F, Patel RA, Craik CS, Ellman JA, Cummings RT and Thornberry NA: Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII. Biochem J. 371:525–532. 2003. View Article : Google Scholar : PubMed/NCBI | |
Maes MB, Martinet W, Schrijvers DM, Van der Veken P, De Meyer GR, Augustyns K, Lambeir AM, Scharpe S and De Meester I: Dipeptidyl peptidase II and leukocyte cell death. Biochem Pharmacol. 72:70–79. 2006. View Article : Google Scholar : PubMed/NCBI | |
Danilova O, Li B, Szardenings AK, Huber BT and Rosenblum JS: Synthesis and activity of a potent, specific azabicyclo[3.3.0]-octane-based DPP II inhibitor. Bioorg Med Chem Lett. 17:507–510. 2007. | |
Hui M and Hui KS: A novel aminopeptidase with highest preference for lysine. Neurochem Res. 31:95–102. 2006. View Article : Google Scholar : PubMed/NCBI | |
Claperon C, Banegas-Font I, Iturrioz X, Rozenfeld R, Maigret B and Llorens-Cortes C: Identification of threonine 348 as a residue involved in aminopeptidase A substrate specificity. J Biol Chem. 284:10618–10626. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fukasawa KM, Hirose J, Hata T and Ono Y: Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B. Biochemistry. 45:11425–11431. 2006. View Article : Google Scholar : PubMed/NCBI | |
Drag M, Bogyo M, Ellman JA and Salvesen GS: Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors. J Biol Chem. 285:3310–3318. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tenorio-Laranga J, Venalainen JI, Mannisto PT and Garcia-Horsman JA: Characterization of membrane-bound prolyl endopeptidase from brain. FEBS J. 275:4415–4427. 2008. View Article : Google Scholar : PubMed/NCBI | |
Edosada CY, Quan C, Tran T, Pham V, Wiesmann C, Fairbrother W and Wolf BB: Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)-Pro(1)-cleaving specificity. FEBS Lett. 580:1581–1586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheng JQ, Lindsley CW, Cheng GZ, Yang H and Nicosia SV: The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene. 24:7482–7492. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Aya LF and Gonzalez-Angulo AM: Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Oncologist. 16:404–414. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zagouri F, Dimopoulos MA, Bournakis E and Papadimitriou CA: Molecular markers in epithelial ovarian cancer: their role in prognosis and therapy. Eur J Gynaecol Oncol. 31:268–277. 2010.PubMed/NCBI | |
Mazzoletti M and Broggini M: PI3K/AKT/mTOR inhibitors in ovarian cancer. Curr Med Chem. 17:4433–4447. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dickson RB, Thompson EW and Lippman ME: Regulation of proliferation, invasion and growth factor synthesis in breast cancer by steroids. J Steroid Biochem Mol Biol. 37:305–316. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Cui X, Hilsenbeck SG and Lee AV: Progesterone receptor loss correlates with human epidermal growth factor receptor 2 overexpression in estrogen receptor-positive breast cancer. Clin Cancer Res. 12:S1013–S1018. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yager JD and Davidson NE: Estrogen carcinogenesis in breast cancer. N Engl J Med. 354:270–282. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oakman C, Viale G and Di Leo A: Management of triple negative breast cancer. Breast. 19:312–321. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rao BR, Slotman BJ, Geldof AA and Dinjens WN: Correlation between tumor histology, steroid receptor status, and adenosine deaminase complexing protein immunoreactivity in ovarian cancer. Int J Gynecol Pathol. 9:47–54. 1990. View Article : Google Scholar |