1.
|
Enzinger PC and Mayer RJ: Esophageal
cancer. N Engl J Med. 349:2241–2252. 2003. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Akutsu Y and Matsubara H: The significance
of lymph node status as a prognostic factor for esophageal cancer.
Surg Today. 41:1190–1195. 2011. View Article : Google Scholar : PubMed/NCBI
|
3.
|
National Cancer Institute (Bethesda, MD,
USA). The Surveillance, Epidemiology and End Results (SEER)
Program. Cancer Statistics Review. 2007.
|
4.
|
Boumber Y and Issa JP: Epigenetics in
cancer: what’s the future? Oncology (Williston Park). 25:220–226.
2282011.
|
5.
|
Hoshino I and Matsubara H: Recent advances
in histone deacetylase targeted cancer therapy. Surg Today.
40:809–815. 2010. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Hoshino I, Matsubara H, Ochiai T, et al:
Histone deacetylase inhibitor FK228 activates tumor suppressor
Prdx1 with apoptosis induction in esophageal cancer cells. Clin
Cancer Res. 11:7945–7952. 2005. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Murakami K, Matsubara H, Hoshino I, et al:
CHAP31 induces apoptosis only via the intrinsic pathway in human
esophageal cancer cells. Oncology. 78:62–74. 2010. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Hoshino I, Matsubara H, Ochiai T, et al:
Gene expression profiling induced by histone deacetylase inhibitor,
FK228, in human esophageal squamous cancer cells. Oncol Rep.
18:85–92. 2007.PubMed/NCBI
|
9.
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10.
|
Kloosterman WP and Plasterk RH: The
diverse functions of microRNAs in animal development and disease.
Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 435:834–838.
2005. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Chiyomaru T, Enokida H, Nakagawa M, et al:
miR-145 and miR-133a function as tumour suppressors and directly
regulate FSCN1 expression in bladder cancer. Br J Cancer.
102:883–891. 2010. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Ichimi T, Enokida H, Seki N, et al:
Identification of novel microRNA targets based on microRNA
signatures in bladder cancer. Int J Cancer. 125:345–352. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Nohata N, Hanazawa T, Seki N, et al: Tumor
suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and
neck squamous cell carcinoma (HNSCC). J Hum Genet. 56:595–601.
2011. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Sugimoto T, Seki N, Hata A, et al: The
galanin signaling cascade is a candidate pathway regulating
oncogenesis in human squamous cell carcinoma. Genes Chromosomes
Cancer. 48:132–142. 2009. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Wagner JM, Hackanson B, Lübbert M, et al:
Histone deacetylase (HDAC) inhibitors in recent clinical trials for
cancer therapy. Clin Epigenetics. 1:117–136. 2010. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Ma X, Ezzeldin HH and Diasio RB: Histone
deacetylase inhibitors: current status and overview of recent
clinical trials. Drugs. 69:1911–1934. 2009. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Kano M, Seki N, Matsubara H, et al:
miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target
FSCN1 in esophageal squamous cell carcinoma. Int J Cancer.
127:2804–2814. 2010. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Kikkawa N, Hanazawa T, Seki N, et al:
miR-489 is a tumour-suppressive miRNA target PTPN11 in
hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer.
103:877–884. 2010. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Yoshino H, Chiyomaru T, Nakagawa M, et al:
The tumour-suppressive function of miR-1 and miR-133a targeting
TAGLN2 in bladder cancer. Br J Cancer. 104:808–818. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22.
|
Kinoshita T, Nohata N, Yoshino H, et al:
Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in
maxillary sinus squamous cell carcinoma. Int J Oncol. 40:185–193.
2012.PubMed/NCBI
|
23.
|
Li X, Lin R and Li J: Epigenetic silencing
of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig
Dis Sci. 56:2849–2856. 2011. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Tsukamoto Y, Nakada C, Moriyama M, et al:
MicroRNA-375 is downregulated in gastric carcinomas and regulates
cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res.
70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Kong KL, Kwong DL, Guan XY, et al:
MicroRNA-375 inhibits tumour growth and metastasis in oesophageal
squamous cell carcinoma through repressing insulin-like growth
factor 1 receptor. Gut. 61:33–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Rountree MR, Bachman KE, Baylin SB, et al:
DNA methylation, chromatin inheritance, and cancer. Oncogene.
20:3156–3165. 2001. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Zha X, Wang F, Zhang H, et al: Lactate
dehydrogenase B is critical for hyperactive mTOR-mediated
tumorigenesis. Cancer Res. 71:13–18. 2011. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Chen Y, Zhang H, Xiao X, et al: Elevation
of serum l-lactate dehydrogenase B correlated with the clinical
stage of lung cancer. Lung Cancer. 54:95–102. 2006. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Hu G, Wei Y and Kang Y: The multifaceted
role of MTDH/AEG-1 in cancer progression. Clin Cancer Res.
15:5615–5620. 2009. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Yu C, Chen K, Song L, et al:
Overexpression of astrocyte elevated gene-1 (AEG-1) is associated
with esophageal squamous cell carcinoma (ESCC) progression and
pathogenesis. Carcinogenesis. 30:894–901. 2009. View Article : Google Scholar : PubMed/NCBI
|