1
|
Walsh DM, Minogue AM, Frigerio CS, Fadeeva
JV, Wasco W and Selkoe DJ: The APP family of proteins: similarities
and differences. Biochem Soc Trans. 35:416–420. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Orcholski ME, Zhang Q and Bredesen DE:
Signaling via amyloid precursor-like proteins APLP1 and APLP2. J
Alzheimers Dis. 23:689–699. 2011.PubMed/NCBI
|
3
|
Needham BE, Wlodek ME, Ciccotosto GD, Fam
BC, Masters CL, Proietto J, Andrikopoulos S and Cappai R:
Identification of the Alzheimer’s disease amyloid precursor protein
(APP) and its homologue APLP2 as essential modulators of glucose
and insulin homeostasis and growth. J Pathol. 215:155–163.
2008.
|
4
|
Korte M, Herrmann U, Zhang X and Draguhn
A: The role of APP and APLP for synaptic transmission, plasticity,
and network function: lessons from genetic mouse models. Exp Brain
Res. 217:435–440. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
von Koch CS, Zheng H, Chen H, Trumbauer M,
Thinakaran G, van der Ploeg LH, Price DL and Sisodia SS: Generation
of APLP2 KO mice and early postnatal lethality in APLP2/APP double
KO mice. Neurobiol Aging. 18:661–669. 1997.PubMed/NCBI
|
6
|
Cappai R, Mok SS, Galatis D, et al:
Recombinant human amyloid precursor-like protein 2 (APLP2)
expressed in the yeast Pichia pastoris can stimulate neurite
outgrowth. FEBS Lett. 442:95–98. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guo J, Thinakaran G, Guo Y, Sisodia SS and
Yu FX: A role for amyloid precursor-like protein 2 in corneal
epithelial wound healing. Invest Ophthalmol Vis Sci. 39:292–300.
1998.PubMed/NCBI
|
8
|
Li XF, Thinakaran G, Sisodia SS and Yu FS:
Amyloid precursor-like protein 2 promotes cell migration toward
fibronectin and collagen IV. J Biol Chem. 274:27249–27256. 1999.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rassoulzadegan M, Yang Y and Cuzin F:
APLP2, a member of the Alzheimer precursor protein family, is
required for correct genomic segregation in dividing mouse cells.
EMBO J. 17:4647–4656. 1998. View Article : Google Scholar
|
10
|
Thinakaran G, Kitt CA, Roskams AJ, et al:
Distribution of an APP homolog, APLP2, in the mouse olfactory
system: a potential role for APLP2 in axogenesis. J Neurosci.
15:6314–6326. 1995.PubMed/NCBI
|
11
|
Kummer C, Wehner S, Quast T, Werner S and
Herzog V: Expression and potential function of beta-amyloid
precursor proteins during cutaneous wound repair. Exp Cell Res.
280:222–232. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
McLoughlin DM and Miller CCJ: The FE65
proteins and Alzheimer’s disease. J Neurosci Res. 86:744–754.
2008.
|
13
|
Tuli A, Sharma M, Naslavsky N, Caplan S
and Solheim JC: Specificity of amyloid precursor-like protein 2
interactions with MHC class I molecules. Immunogenetics.
60:303–313. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tuli A, Sharma M, McIlhaney MM, Talmadge
JE, Naslavsky N, Caplan S and Solheim JC: Amyloid precursor-like
protein 2 increases the endocytosis, instability, and turnover of
the H2-Kd MHC class I molecule. J Immunol.
181:1978–1987. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tuli A, Sharma M, Capek HL, Naslavsky N,
Caplan S and Solheim JC: Mechanism for amyloid precursor-like
protein 2 enhancement of major histocompatibility complex class I
molecule degradation. J Biol Chem. 284:34296–34307. 2009.
View Article : Google Scholar
|
16
|
Choi JH, Lee MY, Kim Y, et al: Isolation
of genes involved in pancreas regeneration by subtractive
hybridization. Biol Chem. 391:1019–1029. 2010.PubMed/NCBI
|
17
|
Covell DG, Wallqvist A, Rabow AA and
Thanki N: Molecular classification of cancer: unsupervised
self-organizing map analysis of gene expression microarray data.
Mol Cancer Therap. 2:317–332. 2003.PubMed/NCBI
|
18
|
Abba MC, Drake JA, Hawkins KA, et al:
Transcriptomic changes in human breast cancer progression as
determined by serial analysis of gene expression. Breast Cancer
Res. 6:499–513. 2004. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Tuli A, Sharma M, Wang X, et al: Amyloid
precursor-like protein 2 association with HLA class I molecules.
Cancer Immunol Immunother. 58:1419–1431. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Eggert S, Paliga K, Soba P, Evin G,
Masters CL, Weidemann A and Beyreuther K: The proteolytic
processing of the amyloid precursor protein gene family members
APLP-2 and APLP-2 involves alpha-, beta-, gamma-, and epsilon-like
cleavages: modulation of APLP-1 processing by N-glycosylation. J
Biol Chem. 279:18146–18156. 2004. View Article : Google Scholar
|
21
|
Sisodia SS, Thinakaran G, Slunt HH, Kitt
CA, Von Koch CS, Reed RR, Zheng H and Price DL: Studies on the
metabolism and biological function of APLP2. Ann NY Acad Sci.
777:77–81. 1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pastorino L, Ikin AF, Lamprianou S,
Vacaresse N, Revelli JP, Platt K, Paganetti P, Mathews PM, Harroch
S and Buxbaum JD: BACE (beta-secretase) modulates the processing of
APLP2 in vivo. Mol Cell Neurosci. 25:642–649. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hogl S, Kuhn PH, Colombo A and
Lichtenthaler SF: Determination of the proteolytic cleavage sites
of the amyloid precursor-like protein 2 by the proteases ADAM10,
BACE1 and γ-secretase. PLoS One. 6:e213372011.PubMed/NCBI
|
24
|
Hansel DE, Rahman A, Wehner S, Herzog V,
Yeo CJ and Maitra A: Increased expression and processing of the
Alzheimer amyloid precursor protein in pancreatic cancer may
influence cellular proliferation. Cancer Res. 63:7032–7037.
2003.
|
25
|
Vassar R, Bennett BD, Babu-Khan S, Kahn S,
Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo
Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL,
Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G and
Citron M: Beta-secretase cleavage of Alzheimer’s amyloid precursor
protein by the transmembrane aspartic protease BACE. Science.
286:735–741. 1999.
|
26
|
Farzan M, Schnitzler CE, Vasilieva N,
Leung D and Choe H: BACE2, a beta-secretase homolog, cleaves at the
beta site and within the amyloid-beta region of the amyloid-beta
precursor protein. Proc Natl Acad Sci USA. 97:9712–9717. 2000.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Basi G, Frigon N, Barbour R, Doan T,
Gordon G, McConlogue L, Sinha S and Zeller M: Antagonistic effects
of beta-site amyloid precursor protein-cleaving enzymes 1 and 2 on
beta-amyloid peptide production in cells. J Biol Chem.
278:31512–31520. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun X, Wang Y, Qing H, Christensen MA, Liu
Y, Zhou W, Tong Y, Xiao C, Huang Y, Zhang S, Liu X and Song W:
Distinct transcriptional regulation and function of the human BACE2
and BACE1 genes. FASEB J. 19:739–49. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bodendorf U, Fischer F, Bodian D, Multhaup
G and Paganetti P: A splice variant of beta-secretase deficient in
the amyloidogenic processing of the amyloid precursor protein. J
Biol Chem. 276:12019–12023. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bennett BD, Babu-Khan S, Loeloff R, Louis
JC, Curran E, Citron M and Vassar R: Expression analysis of BACE2
in brain and peripheral tissues. J Biol Chem. 275:20647–20651.
2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Figueroa DJ, Shi XP, Gardell SJ and Austin
CP: Abetapp secretases are co-expressed with Abetapp in the
pancreatic islets. J Alzheimers Dis. 3:393–396. 2001.PubMed/NCBI
|
32
|
Casas S, Casini P, Piquer S, Altirriba J,
Soty M, Cadavez L, Gomis R and Novials A: BACE2 plays a role in the
insulin receptor trafficking in pancreatic β-cells. Am J Physiol
Endocrinol Metab. 299:E1087–E1095. 2010.PubMed/NCBI
|
33
|
Rooman I and Real FX: Pancreatic ductal
adenocarcinoma and acinar cells: a matter of differentiation and
development? Gut. 61:449–458. 2012. View Article : Google Scholar
|
34
|
Thinakaran G and Sisodia SS: Amyloid
precursor-like protein 2 (APLP2) is modified by the addition of
chondroitin sulfate glycosaminoglycan at a single site. J Biol
Chem. 269:22099–22104. 1994.PubMed/NCBI
|
35
|
Thinakaran G, Slunt HH and Sisodia SS:
Novel regulation of chondroitin sulfate glycosaminoglycan
modification of amyloid precursor protein and its homologue, APLP2.
J Biol Chem. 270:16522–16525. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Owens RB, Smith HS, Nelson-Rees WA and
Springer EL: Epithelial cell cultures from normal and cancerous
human tissues. J Natl Cancer Inst. 56:843–849. 1976.PubMed/NCBI
|
37
|
Taniguchi S, Iwamura T and Katsuki T:
Correlation between spontaneous metastatic potential and type I
collagenolytic activity in a human pancreatic cancer cell line
(SUIT-2) and sublines. Clin Exp Metastasis. 10:259–266. 1992.
View Article : Google Scholar
|
38
|
Iwamura T, Katsuki T and Ide K:
Establishment and characterization of a human pancreatic cancer
cell line (SUIT-2) producing carcinoembryonic antigen and
carbohydrate antigen 19-9. Jpn J Cancer Res. 78:54–62.
1987.PubMed/NCBI
|
39
|
Chin J, Miller F and Lane BP: Detection of
human pancreatic adenocarcinomas by histochemical staining with
monoclonal antibody AR1-28. Diagn Immunol. 3:99–105.
1985.PubMed/NCBI
|
40
|
Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg
AA, Lopez C, Pickren JW, Berjian R, Douglass HO Jr and Chu TM:
Characterization of a new primary human pancreatic tumor line.
Cancer Invest. 4:15–23. 1986. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kyriazis AA, Kyriazis AP, Sternberg CN,
Sloane NH and Loveless JD: Morphological, biological, biochemical,
and karyotypic characteristics of human pancreatic ductal
adenocarcinoma Capan-2 in tissue culture and the nude mouse. Cancer
Res. 46:5810–5815. 1986.
|
42
|
Lee KM, Nguyen C, Ulrich AB, Pour PM and
Ouellette MM: Immortalization with telomerase of the
Nestin-positive cells of the human pancreas. Biochem Biophys Res
Commun. 301:1038–1044. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lee KM, Yasuda H, Hollingsworth MA and
Ouellette MM: Notch 2-positive progenitors with the intrinsic
ability to give rise to pancreatic ductal cells. Lab Invest.
85:1003–1012. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Campbell PM, Groehler AL, Lee KM,
Ouellette MM, Khazak V and Der CJ: K-Ras promotes growth
transformation and invasion of immortalized human pancreatic cells
by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res.
67:2098–2106. 2007. View Article : Google Scholar
|
45
|
Campbell PM, Lee KM, Ouellette MM, Kim HJ,
Groehler AL, Khazak V and Der CJ: Ras-driven transformation of
human nestin-positive pancreatic epithelial cells. Methods Enzymol.
439:451–465. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Matsuo Y, Campbell PM, Brekken RA, et al:
K-Ras promotes angiogenesis mediated by immortalized human
pancreatic epithelial cells through mitogen-activated protein
kinase signaling pathways. Mol Cancer Res. 7:799–808. 2009.
View Article : Google Scholar
|
47
|
Weidemann A, König G, Bunke D, Fischer P,
Salbaum JM, Masters CL and Beyreuther K: Identification,
biogenesis, and localization of precursors of Alzheimer’s disease
A4 amyloid protein. Cell. 57:115–126. 1989.PubMed/NCBI
|
48
|
Venkataramani V, Rossner C, Iffland L,
Schweyer S, Tamboli IY, Walter J, Wirths O and Bayer TA: Histone
deacetylase inhibitor valproic acid inhibits cancer cell
proliferation via down-regulation of the alzheimer amyloid
precursor protein. J Biol Chem. 285:10678–10689. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mauri P, Scarpa A, Nascimbeni AC, Benazzi
L, Parmagnani E, Mafficini A, Della Peruta M, Bassi C, Miyazaki K
and Sorio C: Identification of proteins released by pancreatic
cancer cells by multidimensional protein identification technology:
a strategy for identification of novel cancer markers. FASEB J.
19:1125–1127. 2005.
|
50
|
Li Q and Südhof TC: Cleavage of
amyloid-beta precursor protein and amyloid-beta precursor-like
protein by BACE 1. J Biol Chem. 279:10542–10550. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Sugimoto I, Futakawa S, Oka R, et al:
Beta-galactoside alpha2,6-sialyltransferase I cleavage by BACE1
enhances the sialylation of soluble glycoproteins. A novel
regulatory mechanism for alpha2,6-sialylation. J Biol Chem.
282:34896–34903. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kuhn PH, Marjaux E, Imhof A, De Strooper
B, Haass C and Lichtenthaler SF: Regulated intramembrane
proteolysis of the interleukin-1 receptor II by alpha-, beta-, and
gamma-secretase. J Biol Chem. 282:11982–11995. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zheng H and Koo E: The amyloid precursor
protein: beyond amyloid. Mol Neurodegener. 1:52006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wolfe MS: Selective amyloid-β lowering
agents. BMC Neurosci. 9(Suppl 2): S42008.
|
55
|
Ostermann N, Eder J, Eidhoff U, et al:
Crystal structure of human BACE2 in complex with a
hydroxyethylamine transition-state inhibitor. J Mol Biol.
355:249–261. 2006. View Article : Google Scholar : PubMed/NCBI
|
56
|
Stockley JH and O’Neill C: The proteins
BACE1 and BACE2 and β-secretase activity in normal and Alzheimer’s
disease brain. Biochem Soc Trans. 35:574–576. 2007.
|
57
|
Jacobsen KT and Iverfeldt K: Amyloid
precursor protein and its homologues: a family of
proteolysis-dependent receptors. Cell Mol Life Sci. 66:2299–2318.
2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Jacobsen KT, Adlerz L, Multhaup G and
Iverfeldt K: Insulin-like growth factor-1 (IGF-1)-induced
processing of amyloid-beta precursor protein (APP) and APP-like
protein 2 is mediated by different metalloproteinases. J Biol Chem.
285:10223–10231. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Vassar R: Beta-secretase (BACE) as a drug
target for Alzheimer’s disease. Adv Drug Deliv Rev. 54:1589–1602.
2002.
|
60
|
Gandhi S, Refolo LM and Sambamurti K:
Amyloid precursor protein compartmentalization restricts
beta-amyloid production: therapeutic targets based on BACE
compartmentalization. J Mol Neurosci. 24:137–143. 2004. View Article : Google Scholar
|
61
|
Zou L, Wang Z, Shen L, Bao GB, Wang T,
Kang JH and Pei G: Receptor tyrosine kinases positively regulate
BACE activity and Amyloid-beta production through enhancing BACE
internalization. Cell Res. 17:389–401. 2007.PubMed/NCBI
|
62
|
Eggert S, Midthune B, Cottrell B and Koo
EH: Induced dimerization of the amyloid precursor protein leads to
decreased amyloid-beta protein production. J Biol Chem.
284:28943–28952. 2009. View Article : Google Scholar : PubMed/NCBI
|
63
|
Isbert S, Wagner K, Eggert S, Schweitzer
A, Multhaup G, Weggen S, Kins S and Pietrzik CU: APP dimer
formation is initiated in the endoplasmic reticulum and differs
between APP isoforms. Cell Mol Life Sci. 69:1353–1375. 2012.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Baumkötter F, Wagner K, Eggert S, Wild K
and Kins S: Structural aspects and physiological consequences of
APP/APLP transdimerization. Exp Brain Res. 217:389–395.
2012.PubMed/NCBI
|
65
|
Soba P, Eggert S, Wagner K, Zentgraf H,
Siehl K, Kreger S, Löwer A, Langer A, Merdes G, Paro R, Masters CL,
Müller U, Kins S and Beyreuther K: Homo- and heterodimerization of
APP family members promotes intercellular adhesion. EMBO J.
24:3624–3634. 2005. View Article : Google Scholar : PubMed/NCBI
|
66
|
Kaden D, Munter LM, Reif B and Multhaup G:
The amyloid precursor protein and its homologues: structural and
functional aspects of native and pathogenic oligomerization. Eur J
Cell Biol. 91:234–239. 2012. View Article : Google Scholar : PubMed/NCBI
|
67
|
Gralle M, Botelho MG and Wouters FS:
Neuroprotective secreted amyloid precursor protein acts by
disrupting amyloid precursor protein dimers. J Biol Chem.
284:15016–15025. 2009. View Article : Google Scholar : PubMed/NCBI
|
68
|
Abdelrahim M, Baker CH, Abbruzzese JL and
Safe S: Tolfenamic acid and pancreatic cancer growth, angiogenesis,
and Sp protein degradation. J Natl Cancer Inst. 98:855–868. 2006.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Konduri S, Colon J, Baker CH, Safe S,
Abbruzzese JL, Abudayyeh A, Basha MR and Abdelrahim M: Tolfenamic
acid enhances pancreatic cancer cell and tumor response to
radiation therapy by inhibiting survivin protein expression. Mol
Cancer Ther. 8:533–542. 2009. View Article : Google Scholar : PubMed/NCBI
|
70
|
Jia Z, Gao Y, Wang L, Li Q, Zhang J, Le X,
Wei D, Yao JC, Chang DZ, Huang S and Xie K: Combined treatment of
pancreatic cancer with mithramycin A and tolfenamic acid promotes
Sp1 degradation and synergistic antitumor activity. Cancer Res.
70:1111–1119. 2010. View Article : Google Scholar
|
71
|
Basha R, Baker CH, Sankpal UT, Ahmad S,
Safe S, Abbruzzese JL and Abdelrahim M: Therapeutic applications of
NSAIDS in cancer: special emphasis on tolfenamic acid. Front Biosci
(Schol Ed). 3:797–805. 2011. View
Article : Google Scholar : PubMed/NCBI
|
72
|
Adwan LI, Basha R, Abdelrahim M, Subaiea
GM and Zawia NH: Tolfenamic acid interrupts the de novo synthesis
of the β-amyloid precursor protein and lowers amyloid beta via a
transcriptional pathway. Curr Alzheimer Res. 8:385–92.
2011.PubMed/NCBI
|
73
|
Turner RT III, Loy JA, Nguyen C,
Devasamudram T, Ghosh AK, Koelsch G and Tang J: Specificity of
memapsin 1 and its implications on the design of memapsin 2
(beta-secretase) inhibitor selectivity. Biochemistry. 41:8742–8746.
2002. View Article : Google Scholar : PubMed/NCBI
|
74
|
Hemming ML, Elias JE, Gygi SP and Selkoe
DJ: Identification of beta-secretase (BACE1) substrates using
quantitative proteomics. PLoS One. 4:e84772009. View Article : Google Scholar : PubMed/NCBI
|
75
|
Vassar R, Kovacs DM, Yan R and Wong PC:
The beta-secretase enzyme BACE in health and Alzheimer’s disease:
regulation, cell biology, function, and therapeutic potential. J
Neuroscience. 29:12787–12794. 2009.
|
76
|
Kolb A, Kleeff J, Arnold N, Giese NA,
Giese T, Korc M and Friess H: Expression and differential signaling
of heregulins in pancreatic cancer cells. Int J Cancer.
120:514–523. 2006. View Article : Google Scholar : PubMed/NCBI
|
77
|
Berlin J and Benson AB III: Chemotherapy:
gemcitabine remains the standard of care for pancreatic cancer. Nat
Rev Clin Oncol. 7:135–137. 2010. View Article : Google Scholar : PubMed/NCBI
|