1
|
Teglund S and Toftgård R: Hedgehog beyond
medulloblastoma and basal cell carcinoma. Biochim Biophys Acta.
1805:181–208. 2010.PubMed/NCBI
|
2
|
Jia J and Jiang J: Decoding the Hedgehog
signal in animal development. Cell Mol Life Sci. 63:1249–1265.
2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hebrok M: Hedgehog signaling in pancreas
development. Mechanisms Dev. 120:45–57. 2003. View Article : Google Scholar
|
4
|
Masai I, Yamaguchi M, Tonou-Fujimori N,
Komori A and Okamoto H: The hedgehog-PKA pathway regulates two
distinct steps of the differentiation of retinal ganglion cells:
the cell-cycle exit of retinoblasts and their neuronal maturation.
Development. 132:1539–1553. 2005. View Article : Google Scholar
|
5
|
Kalirai H and Clarke RB: Human breast
epithelial stem cells and their regulation. J Pathol. 208:7–16.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stecca B and Ruiz i Altaba A: Brain as a
paradigm of organ growth: Hedgehog-Gli signaling in neural stem
cells and brain tumors. J Neurobiol. 64:476–490. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Watkins DN, Berman DM, Burkholder SG, Wang
B, Beachy PA and Baylin SB: Hedgehog signaling within airway
epithelial progenitors and in small-cell lung cancer. Nature.
422:313–317. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou YX, Jia LW, Liu WM, Miao CL, Liu S,
Cao YJ and Duan EK: Role of sonic hedgehog in maintaining a pool of
proliferating stem cells in the human fetal epidermis. Hum Reprod.
21:1698–1704. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Detmer K, Thompson AJ, Garner RE, Walker
AN, Gaffield W and Dannawi H: Hedgehog signaling and cell cycle
control in differentiating erythroid progenitors. Blood Cells Mol
Dis. 34:60–70. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Scales SJ and de Sauvage FJ: Mechanisms of
Hedgehog pathway activation in cancer and implications for therapy.
Trends Pharmacol Sci. 30:302–312. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y and Kalderon D: Hedgehog acts as a
somatic stem cell factor in the Drosophila ovary. Nature.
410:599–604. 2001. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Walterhouse DO, Lamm ML, Villavicencio E
and Iannaccone PM: Emerging roles for hedgehog-patched-Gli signal
transduction in reproduction. Biol Reprod. 69:8–14. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Russel MC, Cowan RG, Harman RM, Walker AL
and Quirk SM: The hedgehog signaling pathway in the mouse ovary.
Biol Reprod. 77:226–236. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen X, Horiuchi A, Kikuchi N, Osada R,
Yoshida J, Shizawa T and Konishi I: Hedgehog signal is activated in
ovarian carcinomas, correlating with cell proliferation: its
inhibition leads to growth suppression and apoptosis. Cancer Sci.
98:68–76. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Byrom J, Mudaliar V, Redman CW, Jones P,
Strange RC and Hoban PR: Loss of heterozygosity at chromosome
9q22-31 is a frequent and early event in ovarian tumors. Int J
Oncol. 24:1271–1277. 2004.PubMed/NCBI
|
16
|
Cretnik M, Musani V, Oreskovic S, Leovic D
and Levanat S: The Patched gene is epigenetically regulated in
ovarian dermoids and fibromas, but not in basocellular carcinomas.
Int J Mol Med. 19:875–883. 2007.PubMed/NCBI
|
17
|
Surti U, Hoffner L, Chakravarti A and
Ferrell RE: Genetics and biology of human ovarian teratomas. I.
Cytogenetic analysis and mechanism of origin. Am J Hum Genet.
47:635–643. 1990.PubMed/NCBI
|
18
|
Ulbright TM: Germ cell tumors of the
gonads: a selective review emphsizing problems in differential
diagnosis, newly appreciated, and controversial issues. Mod Pathol.
18:S61–S79. 2005. View Article : Google Scholar
|
19
|
Bal A, Mohan H, Singh SB and Sehgal A:
Malignant transformation in mature cystic teratoma of the ovary:
report of five cases and review of the literature. Arch Gynecol
Obstet. 275:179–182. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Levanat S, Pavelic B, Crnic I, Oreskovic S
and Manojlovic S: Involvement of PTCH gene in various
noninflammatory cysts. J Mol Med. 78:140–146. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Levanat S, Kappler R, Hemmerlein B, Doring
P, Musani V, Komar A, Orešković S, Pavelić B and Hahn H: Analysis
of alterations of the PTCH1 signaling pathway in ovarian dermoids.
Int J Mol Med. 14:793–799. 2004.PubMed/NCBI
|
22
|
Yoshizaki A, Nakayama T, Naito S, Wen CY
and Sekine I: Expressions of sonic hedgehog, patched, smoothened
and Gli-1 in human intestinal stromal tumors and their correlation
with prognosis. World J Gastroenterol. 12:5687–5691.
2006.PubMed/NCBI
|
23
|
Liao X, Siu MK, Au CW, Wong ES, Chan HY,
Ip PP, Ngan HY and Cheung AN: Aberrant activation of hedgehog
signaling pathway in ovarian cancers: effect on prognosis, cell
invasion and differentiation. Carcinogenesis. 30:131–140. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Regl G, Neill GW, Eichberger T, Kasper M,
Ikram MS, Koller J, Hintner H, Quinn AG, Frischauf AM and Aberger
F: Human GLI2 and GLI1 are part of a positive feedback mechanism in
basal cell carcinoma. Oncogene. 21:5529–5539. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Leovic D, Sabol M, Ozretic P, Musani V,
Car D, Marjanovic K, Zubcic V, Sabol I, Sikora M, Grce M, et al:
Hh-Gli signaling pathway activity in oral and oropharyngeal
squamous cell carcinoma. Head Neck. 34:104–112. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cvok ML, Cretnik M, Musani V, Ozretic P
and Levanat S: New sequence variants in BRCA1 and BRCA2 genes
detected by high-resolution melting analysis in an elderly healthy
female population in Croatia. Clin Chem Lab Med. 46:1376–1383.
2008.PubMed/NCBI
|
27
|
Boutet N, Bignon YJ, Drouin-Garraud V,
Sarda P, Longy M, Lacombe D and Gorry P: Spectrum of PTCH mutations
in French patients with Gorlin syndrome. J Invest Dermatol.
121:478–481. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hahn H, Wicking C, Zaphiropoulous PG,
Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E,
Unden AB, Gillies S, et al: Mutations of the human homolog of
Drosophila patched in the nevoid basal cell carcinoma syndrome.
Cell. 85:841–851. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lench NJ, Telford EA, High AS, Markham AF,
Wicking C and Wainwright BJ: Characterisation of human patched germ
line mutations in naevoid basal cell carcinoma syndrome. Hum Genet.
100:497–502. 1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xie J, Murone M, Luoh SM, Ryan A, Gu Q,
Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, et al: Activating
Smoothened mutations in sporadic basal-cell carcinoma. Nature.
391:90–92. 1998. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Koch A, Waha A, Hartmann W, Milde U,
Goodyer CG, Sorensen N, Berthold F, Digon-Sontgerath B, Kratzschmar
J, Wiestler OD and Pietsch T: No evidence for mutations or altered
expression of the Suppressor of Fused (SUFU) in primitive
neuroectodermal tumours. Neuropath Applied Neurobiol. 30:532–539.
2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wong SC, Lo SF, Cheung MT, Ng KO, Tse CW,
Lai BS, Lee KC and Lo YM: Quantification of plasma β-catenin mRNA
in colorectal cancer and adenoma patients. Clin Cancer Res.
10:1613–1617. 2004.
|
33
|
Mullor JL, Dahmane N, Sun T and Ruiz i
Altaba A: Wnt signals are targets and mediators of Gli function.
Curr Biol. 11:769–773. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Veland IR, Awan A, Pedersen LB, Yoder BK
and Christensen ST: Primary cilia and signaling pathways in
mammalian development, health and disease. Nephron Physiol.
111:39–53. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Solter D: From teratocarcinomas to
embryonic stem cells and beyond: a history of embryonic stem cell
research. Nature Review Genet. 7:312–327. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Huber MA, Kraut N and Beug H: Molecular
requirements for epithelial-mesenchymal transition during tumor
progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Savagner P: The epithelial-mesenchymal
transition (EMT) phenomenon. Ann Oncol 21. (Suppl 7): vii89–vii92.
2010.PubMed/NCBI
|
38
|
Wijgerde M, Ooms M, Hoogerbrugge JW and
Anton Grootegoed J: Hedgehog signaling in mouse ovary: Indian
Hedgehog and Desert Hedgehog from granulosa cells induce target
gene expression in developing theca cells. Endocrinology.
146:3558–3566. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kenney AM and Rowitch DH: Sonic Hedgehog
promotes G(1) cyclin expression and sustained cell cycle
progression in mammalian neuronal precursors. Mol Cell Biol.
20:9055–9067. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Acconcia F, Sigismund S and Polo S:
Ubiquitin in trafficking: the network at work. Exp Cell Res.
315:1610–1618. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rohatgi R, Milenkovic L and Scott MP:
Patched1 regulates Hedgehog signaling at the primary cilium.
Science. 317:372–376. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lu X, Liu S and Kornberg TB: The
C-terminal tail of the Hedgehog receptor Patched regulates both
localization and turnover. Genes Dev. 20:2539–2551. 2006.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen MH, Wilson CW, Li YJ, Law KKL, Lu CS,
Gacayan R, Zhang X, Hui CC and Chuang PT: Cilium-independent
regulation of Gli protein function by Sufu in Hedgehog signaling is
evolutionarily conserved. Genes Dev. 23:1910–1928. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Han YG, Kim HJ, Dlugosz AA, Ellison DW,
Gilbertson RJ and Alvarez-Buylla A: Dual and opposing roles of
primary cilia in medulloblastoma development. Nature Med.
15:1062–1065. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wong SY, Seol AD, So PL, Ermilov AE,
Bichakjian CK, Epstein EE Jr, Dlugosz AA and Reiter JF: Primary
cilia can both mediate and suppress Hedgehog pathway-dependent
tumorigenesis. Nature Med. 15:1055–1061. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang J, Lipinski RJ, Gipp JJ, Shaw AK and
Bushman W: Hedgehog pathway responsiveness correlates with the
presence of primary cilia on prostate stromal cells. BMC Dev Biol.
9:502009. View Article : Google Scholar
|
47
|
Teilmann SC, Byskov AG, Pedersen PA,
Wheatley DN, Pazour GJ and Christensen ST: Localization of
transient receptor potential ion channels in primary and motile
cilia of the female murine reproductive organs. Mol Reprod Dev.
71:444–452. 2005. View Article : Google Scholar : PubMed/NCBI
|