1
|
Alberg AJ, Ford JG and Samet JM; American
College of Chest Physicians: Epidemiology of lung cancer: ACCP
evidence-based clinical practice guidelines (2nd edition). Chest.
132:29S–55S. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Committee for Scientific Affairs; Sakata
R, Fujii Y and Kuwano H: Thoracic and cardiovascular surgery in
Japan during 2009: Annual report by The Japanese Association for
Thoracic Surgery. Gen Thorac Cardiovasc Surg. 59:636–667. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Sawabata N, Miyaoka E, Asamura H, et al:
Japanese lung cancer registry study of 11,663 surgical cases in
2004. J Thorac Oncol. 6:1229–1235. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zanaria E, Muscatelli F, Bardoni B, et al:
An unusual member of the nuclear hormone receptor superfamily
responsible for X-linked adrenal hypoplasia congenita. Nature.
372:635–645. 1994. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Swain A, Zanaria E, Hacker A, Lovell-Badge
R and Camerino G: Mouse Dax1 expression is consistent with a role
in sex determination as well as in adrenal and hypothalamus
function. Nat Genet. 12:404–409. 1996. View Article : Google Scholar : PubMed/NCBI
|
6
|
Burris TP, Guo W and McCabe ERB: The gene
responsible for adrenal hypoplasia congenita, DAX1, encodes a
nuclear hormone receptor that defines a new class within the
superfamily. Recent Prog Horm Res. 51:241–260. 1996.PubMed/NCBI
|
7
|
Ikeda Y, Swain A, Weber TJ, et al:
Steroidogenic factor 1 and Dax-1 colocalization in multiple cell
lineages: potential links in endocrine development. Mol Endocrinol.
10:1261–72. 1996.PubMed/NCBI
|
8
|
Lessnick SL, Dacwag CS and Golub TR: The
Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth
arrest in primary human fibroblasts. Cancer Cell. 1:393–401.
2002.
|
9
|
Lalli E, Melner MH, Stocco DM and
Sassone-Corsi P: DAX-1 blocks steroid production at multiple
levels. Endocrinology. 139:4237–4243. 1998.PubMed/NCBI
|
10
|
Zazopoulos P, Lalli E, Stocco DM and
Sassone-Corsi P: DNA binding and transcriptional repression by
DAX-1 blocks steroidogenesis. Nature. 390:311–315. 1997. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sugawara T, Lin D, Holt JA, et al:
Structure of the human steroidogenic acute regulatory protein
(StAR) gene. Biochemistry. 34:12506–12512. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Stocco DM and Clark BJ: Regulation of
acute production of steroid in steroidgenic tissue. Endocr Rev.
17:221–244. 1996.PubMed/NCBI
|
13
|
Park YY, Ahn SW, Kim HJ, et al: An
autoregulatory loop controlling orphan nuclear receptor DAX-1 gene
expression by orphan nuclear receptor ERRγ. Nucleic Acids Res.
33:6756–6768. 2005.PubMed/NCBI
|
14
|
Holter E, Kotaja N, Makela S, et al:
Inhibition of androgen receptor(AR) function by the reproductive
orphan nuclear receptor DAX-1. Mol Endocrinol. 16:512–528. 2002.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Agoulnik IU, Krause WC, Bingman WE III, et
al: Repressors of androgen and progesterone receptor action. J Biol
Chem. 278:31136–31148. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lalli E, Ohe K, Hindelang C and
Sassone-Corsi P: Orphan receptor DAX-1 is a shuttling RNA binding
protein associated with polyribosomes via mRNA. Mol Cell Biol.
20:4910–4921. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Dean M, Fojo T and Bates S: Tumor stem
cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005.
View Article : Google Scholar
|
19
|
Lou H and Dean M: Targeted therapy for
cancer stem cells: the patched pathway and ABC transporters.
Oncogene. 26:1357–1360. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Seo DC, Sung JM, Cho HJ, et al: Gene
expression profiling of cancer stem cell in human lung
adenocarcinoma A549 cells. Mol Cancer. 6:752007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Saito S, Ito K, Suzuki T, et al: Orphan
nuclear receptor DAX-1 in human endometrium and its disorders.
Cancer Sci. 96:645–652. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nakamura Y, Suzuki T, Arai Y and Sasano H:
Nuclear receptor DAX1 in human prostate cancer: a novel independent
biological modulator. Endocr J. 56:39–44. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mendiola M, Carrillo J, García E, et al:
The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1
oncoprotein and is highly expressed in Ewing tumors. Int J Cancer.
118:1381–1389. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kinsey M, Smith R and Lessnick SL: NR0B1
is required for the oncogenic phenotype mediated by EWS/FLI in
Ewing’s sarcoma. Mol Cancer Res. 4:851–859. 2006.
|
25
|
Oda T, Tian T, Inoue M, et al: Tumorgenic
role of orphan nuclear receptor NR0B1 in lung adenocarcinoma. Am J
Pathol. 175:1235–1245. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Spiegelman BM: PPAR-γ: Adipogenic
regulator and thiazolidinedine receptor. Diabetes. 47:507–514.
1998.
|
27
|
Tontonoz P, Hu E and Spiegelman BM:
Stimulation of adipogenesis in fibroblasts by PPARγ 2, a
lipid-activated transcription factor. Cell. 79:1147–1156. 1994.
|
28
|
Gearing KL, Gottlicher M, Teboul M,
Widmark E and Gustafsson JA: Interaction of the
peroxisome-proliferator-activated receptor and retinoid X receptor.
Proc Natl Acad Sci USA. 90:1440–1444. 1993. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mueller E, Sarraf P, Tontonoz P, et al:
Terminal differentiation of human breast cancer through PPARγ. Mol
Cell. 1:465–470. 1998.
|
30
|
Sarraf P, Mueller E, Jones D, et al:
Differentiation and reversal of malignant changes in colon cancer
through PPARγ. Nat Med. 4:1046–1052. 1998.PubMed/NCBI
|
31
|
Lambe KG and Tugwood JD: A human
perioxisome proliferator-activated receptor-γ is activated by
inducers of adipogenesis including thiazolidinedine drugs. Eur J
Biochem. 239:1–7. 1996.
|
32
|
Keshamouni VG, Reddy RC, Arenberg DA, et
al: Peroxisome proliferator-activated receptor-γ activation
inhibits tumor progression in non-small-cell lung cancer. Oncogene.
23:100–108. 2004.
|
33
|
Satoh T, Toyoda M, Hoshino H, et al:
Activation of peroxisome proliferator-activated receptor-γ
stimulates the growth arrest and DNA-damage inducible 153 gene in
non-small cell lung carcinoma cells. Oncogene. 21:2171–2180.
2002.
|
34
|
Li M, Lee TW, Mok TS, Warner TD, Yim AP
and Chen GC: Activation of peroxisome proliferator-activated
receptor-γ by troglitazone (TGZ) inhibits human lung cell growth. J
Cell Biochem. 96:760–774. 2005.
|
35
|
Tsubouchi Y, Sano H, Kawahito Y, et al:
Inhibition of human lung cancer cell growth by the peroxisome
proliferator-activated receptor-γ agonists through induction of
apoptosis. Biochem Biophys Res Commun. 270:400–405. 2000.
|
36
|
Kim GS, Lee GY, Nedumaran B, et al: The
orphan nuclear receptor DAX-1 acts as a novel transcriptional
corepressor of PPARγ. Biochem Biophys Res Commun. 370:264–268.
2008.PubMed/NCBI
|
37
|
Morii E and Oboki K: MITF is necessary for
generation of prostaglandin D2 in mouse mast cells. J Biol Chem.
279:48293–48299. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Patel M, Lu L, Zander DS, Sreerama L, Coco
D and Moreb JS: ALDH1A1 and ALDH3A1 expression in lung cancers:
Correlation with histologic type and potential precursors. Lung
Cancer. 59:340–349. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Muzio G, Maggiora M, Paiuzzi E, Oraldi M
and Canuto RA: Aldehyde dehydrogenase ands and cell proliferation.
Free Radic Biol Med. 52:735–746. 2012. View Article : Google Scholar : PubMed/NCBI
|