The prolactin receptor mediates HOXA1-stimulated oncogenicity in mammary carcinoma cells
- Authors:
- Lin Hou
- Bing Xu
- Kumarasamypet M. Mohankumar
- Vincent Goffin
- Jo K. Perry
- Peter E. Lobie
- Dong-Xu Liu
-
Affiliations: Liggins Institute, University of Auckland, Auckland 1023, New Zealand, INSERM, Unit 845, Research Center in Growth and Signaling, University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Necker, Paris 75015, France - Published online on: October 15, 2012 https://doi.org/10.3892/ijo.2012.1660
- Pages: 2285-2295
This article is mentioned in:
Abstract
Gray S, Pandha HS, Michael A, Middleton G and Morgan R: HOX genes in pancreatic development and cancer. JOP. 12:216–219. 2011.PubMed/NCBI | |
Shah N and Sukumar S: The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 10:361–371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Morgan R, Pirard PM, Shears L, Sohal J, Pettengell R and Pandha HS: Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res. 67:5806–5813. 2007. View Article : Google Scholar : PubMed/NCBI | |
Daniels TR, Neacato II, Rodriguez JA, Pandha HS, Morgan R and Penichet ML: Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells. Leukemia. 24:1555–1565. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shears L, Plowright L, Harrington K, Pandha HS and Morgan R: Disrupting the interaction between HOX and PBX causes necrotic and apoptotic cell death in the renal cancer lines CaKi-2 and 769-P. J Urol. 180:2196–2201. 2008. View Article : Google Scholar : PubMed/NCBI | |
Plowright L, Harrington KJ, Pandha HS and Morgan R: HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br J Cancer. 100:470–475. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aulisa L, Forraz N, McGuckin C and Hartgerink JD: Inhibition of cancer cell proliferation by designed peptide amphiphiles. Acta Biomater. 5:842–853. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morgan R, Plowright L, Harrington KJ, Michael A and Pandha HS: Targeting HOX and PBX transcription factors in ovarian cancer. BMC Cancer. 10:892010. View Article : Google Scholar : PubMed/NCBI | |
Jung C, Kim RS, Lee SJ, Wang C and Jeng MH: HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res. 64:3046–3051. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO and Lobie PE: Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem. 278:7580–7590. 2003. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Y, Daniel CA, Strickland P and Daniel CW: Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 54:5981–5985. 1994.PubMed/NCBI | |
Raman V, Martensen SA, Reisman D, et al: Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature. 405:974–978. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Chen H, Parker B, et al: HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Res. 66:9527–9534. 2006. View Article : Google Scholar : PubMed/NCBI | |
Makiyama K, Hamada J, Takada M, et al: Aberrant expression of HOX genes in human invasive breast carcinoma. Oncol Rep. 13:673–679. 2005.PubMed/NCBI | |
Lumsden A and Krumlauf R: Patterning the vertebrate neuraxis. Science. 274:1109–1115. 1996. View Article : Google Scholar | |
Chariot A, Moreau L, Senterre G, Sobel ME and Castronovo V: Retinoic acid induces three newly cloned HOXA1 transcripts in MCF7 breast cancer cells. Biochem Biophys Res Commun. 215:713–720. 1995. View Article : Google Scholar : PubMed/NCBI | |
Maulbecker CC and Gruss P: The oncogenic potential of deregulated homeobox genes. Cell Growth Differ. 4:431–441. 1993.PubMed/NCBI | |
Chariot A and Castronovo V: Detection of HOXA1 expression in human breast cancer. Biochem Biophys Res Commun. 222:292–297. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mohankumar KM, Xu XQ, Zhu T, et al: HOXA1-stimulated oncogenicity is mediated by selective upregulation of components of the p44/42 MAP kinase pathway in human mammary carcinoma cells. Oncogene. 26:3998–4008. 2007. View Article : Google Scholar | |
Jacobson EM, Hugo ER, Borcherding DC and Ben-Jonathan N: Prolactin in breast and prostate cancer: molecular and genetic perspectives. Discov Med. 11:315–324. 2011.PubMed/NCBI | |
Fernandez I, Touraine P and Goffin V: Prolactin and human tumourogenesis. J Neuroendocrinol. 22:771–777. 2010. | |
Ben-Jonathan N, Mershon JL, Allen DL and Steinmetz RW: Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev. 17:639–669. 1996.PubMed/NCBI | |
Zinger M, McFarland M and Ben-Jonathan N: Prolactin expression and secretion by human breast glandular and adipose tissue explants. J Clin Endocrinol Metab. 88:689–696. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bhatavdekar JM, Patel DD, Shah NG, et al: Prolactin as a local growth promoter in patients with breast cancer: GCRI experience. Eur J Surg Oncol. 26:540–547. 2000. View Article : Google Scholar : PubMed/NCBI | |
Reynolds C, Montone KT, Powell CM, Tomaszewski JE and Clevenger CV: Expression of prolactin and its receptor in human breast carcinoma. Endocrinology. 138:5555–5560. 1997.PubMed/NCBI | |
Touraine P, Martini JF, Zafrani B, et al: Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab. 83:667–674. 1998. View Article : Google Scholar | |
Tran-Thanh D, Arneson NC, Pintilie M, et al: Amplification of the prolactin receptor gene in mammary lobular neoplasia. Breast Cancer Res Treat. 128:31–40. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bogorad RL, Courtillot C, Mestayer C, et al: Identification of a gain-of-function mutation of the prolactin receptor in women with benign breast tumors. Proc Natl Acad Sci USA. 105:14533–14538. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bouilly J, Sonigo C, Auffret J, Gibori G and Binart N: Prolactin signaling mechanisms in ovary. Mol Cell Endocrinol. 356:80–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
Goffin V, Bernichtein S, Touraine P and Kelly PA: Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev. 26:400–422. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clevenger CV, Furth PA, Hankinson SE and Schuler LA: The role of prolactin in mammary carcinoma. Endocr Rev. 24:1–27. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bole-Feysot C, Goffin V, Edery M, Binart N and Kelly PA: Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 19:225–268. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kirken RA, Malabarba MG, Xu J, et al: Prolactin stimulates serine/tyrosine phosphorylation and formation of heterocomplexes of multiple Stat5 isoforms in Nb2 lymphocytes. J Biol Chem. 272:14098–14103. 1997. View Article : Google Scholar : PubMed/NCBI | |
Brockman JL, Schroeder MD and Schuler LA: PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol Endocrinol. 16:774–784. 2002. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto A, Masuhara M, Mitsui K, et al: CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood. 89:3148–3154. 1997.PubMed/NCBI | |
Zhu T, Starling-Emerald B, Zhang X, et al: Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res. 65:317–324. 2005.PubMed/NCBI | |
Liu DX and Lobie PE: Transcriptional activation of p53 by Pitx1. Cell Death Differ. 14:1893–1907. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ma FY, Anderson GM, Gunn TD, Goffin V, Grattan DR and Bunn SJ: Prolactin specifically activates signal transducer and activator of transcription 5b in neuroendocrine dopaminergic neurons. Endocrinology. 146:5112–5119. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kang J, Qian PX, Pandey V, et al: Artemin is estrogen regulated and mediates antiestrogen resistance in mammary carcinoma. Oncogene. 29:3228–3240. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wood TJ, Sliva D, Lobie PE, et al: Mediation of growth hormone-dependent transcriptional activation by mammary gland factor/Stat 5. J Biol Chem. 270:9448–9453. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wood TJ, Sliva D, Lobie PE, et al: Specificity of transcription enhancement via the STAT responsive element in the serine protease inhibitor 2.1 promoter. Mol Cell Endocrinol. 130:69–81. 1997. View Article : Google Scholar : PubMed/NCBI | |
Clarkson RW, Shang CA, Levitt LK, Howard T and Waters MJ: Ternary complex factors Elk-1 and Sap-1a mediate growth hormone-induced transcription of egr-1 (early growth response factor-1) in 3T3-F442A preadipocytes. Mol Endocrinol. 13:619–631. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gille H, Kortenjann M, Thomae O, et al: ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14:951–962. 1995.PubMed/NCBI | |
Janknecht R and Hunter T: Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO J. 16:1620–1627. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rahnama F, Shafiei F, Gluckman PD, Mitchell MD and Lobie PE: Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology. 147:5275–5283. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaulsay KK, Zhu T, Bennett W, Lee KO and Lobie PE: The effects of autocrine human growth hormone (hGH) on human mammary carcinoma cell behavior are mediated via the hGH receptor. Endocrinology. 142:767–777. 2001.PubMed/NCBI | |
Del BG, Darzynkiewicz Z, Degraef C, Mosselmans R, Fokan D and Galand P: Comparison of methods based on annexin-V binding, DNA content or TUNEL for evaluating cell death in HL-60 and adherent MCF-7 cells. Cell Prolif. 32:25–37. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bernichtein S, Kayser C, Dillner K, et al: Development of pure prolactin receptor antagonists. J Biol Chem. 278:35988–35999. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fields K, Kulig E and Lloyd RV: Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissues by polymerase chain reaction. Lab Invest. 68:354–360. 1993.PubMed/NCBI | |
Ginsburg E and Vonderhaar BK: Prolactin synthesis and secretion by human breast cancer cells. Cancer Res. 55:2591–2595. 1995.PubMed/NCBI | |
Nevalainen MT, Valve EM, Ingleton PM, Nurmi M, Martikainen PM and Harkonen PL: Prolactin and prolactin receptors are expressed and functioning in human prostate. J Clin Invest. 99:618–627. 1997. View Article : Google Scholar : PubMed/NCBI | |
Clevenger CV, Chang WP, Ngo W, Pasha TL, Montone KT and Tomaszewski JE: Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol. 146:695–705. 1995.PubMed/NCBI | |
Meng J, Tsai-Morris CH and Dufau ML: Human prolactin receptor variants in breast cancer: low ratio of short forms to the long-form human prolactin receptor associated with mammary carcinoma. Cancer Res. 64:5677–5682. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Clevenger CV, Minkovsky N, et al: Stabilization of prolactin receptor in breast cancer cells. Oncogene. 25:1896–1902. 2006. View Article : Google Scholar : PubMed/NCBI | |
Benbassat C, Shoba LN, Newman M, Adamo ML, Frank SJ and Lowe WL Jr: Growth hormone-mediated regulation of insulin-like growth factor I promoter activity in C6 glioma cells. Endocrinology. 140:3073–3081. 1999.PubMed/NCBI | |
Galsgaard ED, Gouilleux F, Groner B, Serup P, Nielsen JH and Billestrup N: Identification of a growth hormone-responsive STAT5-binding element in the rat insulin 1 gene. Mol Endocrinol. 10:652–660. 1996.PubMed/NCBI | |
Bergad PL, Shih HM, Towle HC, Schwarzenberg SJ and Berry SA: Growth hormone induction of hepatic serine protease inhibitor 2.1 transcription is mediated by a Stat5-related factor binding synergistically to two gamma-activated sites. J Biol Chem. 270:24903–24910. 1995. View Article : Google Scholar | |
Freedman VH and Shin SI: Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell. 3:355–359. 1974. View Article : Google Scholar : PubMed/NCBI | |
Rouet V, Bogorad RL, Kayser C, et al: Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc Natl Acad Sci USA. 107:15199–15204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vomachka AJ, Pratt SL, Lockefeer JA and Horseman ND: Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene. 19:1077–1084. 2000. View Article : Google Scholar : PubMed/NCBI | |
Oakes SR, Robertson FG, Kench JG, et al: Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene. 26:543–553. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ormandy CJ, Hall RE, Manning DL, et al: Coexpression and cross-regulation of the prolactin receptor and sex steroid hormone receptors in breast cancer. J Clin Endocrinol Metab. 82:3692–3699. 1997.PubMed/NCBI | |
Mertani HC, Garcia-Caballero T, Lambert A, et al: Cellular expression of growth hormone and prolactin receptors in human breast disorders. Int J Cancer. 79:202–211. 1998. View Article : Google Scholar : PubMed/NCBI | |
Galsgaard ED, Rasmussen BB, Folkesson CG, et al: Re-evaluation of the prolactin receptor expression in human breast cancer. J Endocrinol. 201:115–128. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bernichtein S, Touraine P and Goffin V: New concepts in prolactin biology. J Endocrinol. 206:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tworoger SS and Hankinson SE: Prolactin and breast cancer etiology: an epidemiologic perspective. J Mammary Gland Biol Neoplasia. 13:41–53. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu ZS, Yang K, Wan Y, et al: Tumor expression of human growth hormone and human prolactin predict a worse survival outcome in patients with mammary or endometrial carcinoma. J Clin Endocrinol Metab. 96:E1619–E1629. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schroeder MD, Symowicz J and Schuler LA: PRL modulates cell cycle regulators in mammary tumor epithelial cells. Mol Endocrinol. 16:45–57. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tan SH and Nevalainen MT: Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer. 15:367–390. 2008. View Article : Google Scholar | |
Wagner KU and Rui H: Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia. 13:93–103. 2008. View Article : Google Scholar : PubMed/NCBI | |
Su B and Karin M: Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol. 8:402–411. 1996. View Article : Google Scholar : PubMed/NCBI | |
van BT, Hawes BE, Luttrell DK, et al: Receptor-tyrosine-kinase- and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature. 376:781–784. 1995. | |
Kim EK and Choi EJ: Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mansour SJ, Matten WT, Hermann AS, et al: Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 265:966–970. 1994. View Article : Google Scholar : PubMed/NCBI | |
Grant S: Cotargeting survival signaling pathways in cancer. J Clin Invest. 118:3003–3006. 2008. View Article : Google Scholar : PubMed/NCBI | |
Salh B, Marotta A, Matthewson C, et al: Investigation of the Mek-MAP kinase-Rsk pathway in human breast cancer. Anticancer Res. 19:731–740. 1999.PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Llambi F and Green DR: Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev. 21:12–20. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hattori R, Maulik N, Otani H, et al: Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol. 33:1929–1936. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lord JD, McIntosh BC, Greenberg PD and Nelson BH: The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol. 164:2533–2541. 2000. View Article : Google Scholar : PubMed/NCBI | |
Manni A, Wright C, Davis G, Glenn J, Joehl R and Feil P: Promotion by prolactin of the growth of human breast neoplasms cultured in vitro in the soft agar clonogenic assay. Cancer Res. 46:1669–1672. 1986.PubMed/NCBI | |
Howell SJ, Anderson E, Hunter T, Farnie G and Clarke RB: Prolactin receptor antagonism reduces the clonogenic capacity of breast cancer cells and potentiates doxorubicin and paclitaxel cytotoxicity. Breast Cancer Res. 10:R682008. View Article : Google Scholar : PubMed/NCBI | |
Dagvadorj A, Collins S, Jomain JB, et al: Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology. 148:3089–3101. 2007. View Article : Google Scholar : PubMed/NCBI |