1
|
Haddad RI and Shin DM: Recent advances in
head and neck cancer. N Engl J Med. 359:1143–1154. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cohen EE, Haraf DJ, Kunnavakkam R, et al:
Epidermal growth factor receptor inhibitor gefitinib added to
chemoradiotherapy in locally advanced head and neck cancer. J Clin
Oncol. 28:3336–3343. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jimi E, Furuta H, Matsuo K, Tominaga K,
Takahashi T and Nakanishi O: The cellular and molecular mechanisms
of bone invasion by oral squamous cell carcinoma. Oral Dis.
17:462–468. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ash CS, Nason RW, Abdoh AA and Cohen MA:
Prognostic implications of mandibular invasion in oral cancer. Head
Neck. 22:794–798. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Semba I, Matsuuchi H and Miura Y:
Histomorphometric analysis of osteoclastic resorption in bone
directly invaded by gingival squamous cell carcinoma. J Oral Pathol
Med. 25:429–435. 1996. View Article : Google Scholar : PubMed/NCBI
|
6
|
Totsuka Y, Usui Y, Tei K, Fukuda H, Shindo
M, Iizuka T and Amemiya A: Mandibular involvement by squamous cell
carcinoma of the lower alveolus: analysis and comparative study of
histologic and radiologic features. Head Neck. 13:40–50. 1991.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Shibahara T, Noma H, Takasaki Y and Nomura
T: Repair of the inferior alveolar nerve with a forearm cutaneous
nerve graft after ablative surgery of the mandible. J Oral
Maxillofac Surg. 58:714–717. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shah J and Lydiatt WM: Buccal mucosa,
alveolus, retromolar trigone, floor of mouth, hard palate, and
tongue tumors. Comprehensive Management of Head and Neck Tumors.
Thawley SE: 2nd edition. WB Saunders; Philadelphia, PA: pp.
686–693. 1999
|
9
|
Carter RL, Tsao SW, Burman JF, Pittam MR,
Clifford P and Shaw HJ: Patterns and mechanisms of bone invasion by
squamous carcinomas of the head and neck. Am J Surg. 146:451–455.
1983. View Article : Google Scholar : PubMed/NCBI
|
10
|
Müller H and Slootweg PJ: Mandibular
invasion by oral squamous cell carcinoma. Clinical aspects. J
Craniomaxillofac Surg. 18:80–84. 1990.PubMed/NCBI
|
11
|
Totsuka Y, Usui Y, Tei K, Kida M,
Mizukoshi T, Notani K and Fukuda H: Results of surgical treatment
for squamous carcinoma of the lower alveolus: segmental vs.
marginal resection. Head Neck. 13:114–120. 1991. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wong RJ, Keel SB, Glynn RJ and Varvares
MA: Histological pattern of mandibular invasion by oral squamous
cell carcinoma. Laryngoscope. 110:65–72. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Guise TA and Mundy GR: Cancer and bone.
Endocr Rev. 19:18–54. 1998.
|
14
|
Shibahara T, Nomura T, Cui NH and Noma H:
A study of osteoclast-related cytokines in mandibular invasion by
squamous cell carcinoma. Int J Oral Maxillofac Surg. 34:789–793.
2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yasuda H, Shima N, Nakagawa N, et al:
Osteoclast differentiation factor is a ligand for
osteoprotegerin/osteoclastogenesis-inhibitory factor and is
identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 95:3597–3602.
1998. View Article : Google Scholar
|
16
|
Lacey DL, Timms E, Tan HL, et al:
Osteoprotegerin ligand is a cytokine that regulates osteoclast
differentiation and activation. Cell. 93:165–176. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tsuda E, Goto M, Mochizuki S, Yano K,
Kobayashi F, Morinaga T and Higashio K: Isolation of a novel
cytokine from human fibroblasts that specifically inhibits
osteoclastogenesis. Biochem Biophys Res Commun. 234:137–142. 1997.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Simonet WS, Lacey DL, Dunstan CR, et al:
Osteoprotegerin: a novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Suda T, Takahashi N, Udagawa N, Jimi E,
Gillespie MT and Martin TJ: Modulation of osteoclast
differentiation and function by the new members of the tumor
necrosis factor receptor and ligand families. Endocr Rev.
20:345–357. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee Y, Schwarz E, Davies M, et al:
Differences in the cytokine profiles associated with prostate
cancer cell induced osteoblastic and osteolytic lesions in bone. J
Orthop Res. 21:62–72. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Miller RE, Branstetter D, Armstrong A, et
al: Receptor activator of NF-κB ligand inhibition suppresses bone
resorption and hypercalcemia but does not affect host immune
responses to influenza infection. J Immunol. 179:266–274. 2007.
|
22
|
Armstrong AP, Miller RE, Jones JC, Zhang
J, Keller ET and Dougall WC: RANKL acts directly on RANK-expressing
prostate tumor cells and mediates migration and expression of tumor
metastasis genes. Prostate. 68:92–104. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Canon JR, Roudier M, Bryant R, Morony S,
Stolina M, Kostenuik PJ and Dougall WC: Inhibition of RANKL blocks
skeletal tumor progression and improves survival in a mouse model
of breast cancer bone metastasis. Clin Exp Metastasis. 25:119–129.
2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wada T, Nakashima T, Hiroshi N and
Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone
disease. Trends Mol Med. 12:17–25. 2006. View Article : Google Scholar
|
25
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mizuno A, Amizuka N, Irie K, et al: Severe
osteoporosis in mice lacking osteoclastogenesis inhibitory
factor/osteoprotegerin. Biochem Biophys Res Commun. 247:610–615.
1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wong BR, Rho J, Arron J, et al: TRANCE is
a novel ligand of the tumor necrosis factor receptor family that
activates c-Jun N-terminal kinase in T cells. J Biol Chem.
272:25190–25194. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kong YY, Yoshida H, Sarosi I, et al: OPGL
is a key regulator of osteoclastogenesis, lymphocyte development
and lymph-node organogenesis. Nature. 397:315–323. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Anderson DM, Maraskovsky E, Billingsley
WL, et al: A homologue of the TNF receptor and its ligand enhance
T-cell growth and dendritic-cell function. Nature. 390:175–179.
1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jimi E, Akiyama S, Tsurukai T, et al:
Osteoclast differentiation factor acts as a multifunctional
regulator in murine osteoclast differentiation and function. J
Immunol. 163:434–442. 1999.PubMed/NCBI
|
31
|
Dougall WC, Glaccum M, Charrier K, et al:
RANK is essential for osteoclast and lymph node development. Genes
Dev. 13:2412–2424. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Body JJ, Facon T, Coleman RE, et al: A
study of the biological receptor activator of nuclear factor-κB
ligand inhibitor, denosumab, in patients with multiple myeloma or
bone metastases from breast cancer. Clin Cancer Res. 12:1221–1228.
2006.
|
33
|
Bendre M, Gaddy D, Nicholas RW and Suva
LJ: Breast cancer metastasis to bone: it is not all about PTHrP.
Clin Orthop Relat Res. 415:S39–S45. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Thomas RJ, Guise TA, Yin JJ, Elliott J,
Horwood NJ, Martin TJ and Gillespie MT: Breast cancer cells
interact with osteoblasts to support osteoclast formation.
Endocrinology. 140:4451–4458. 1999.PubMed/NCBI
|
35
|
Brown JM, Corey E, Lee ZD, True LD, Yun
TJ, Tondravi M and Vessella RL: Osteoprotegerin and RANK ligand
expression in prostate cancer. Urology. 57:611–616. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sezer O, Heider U, Zavrski I, Kühne CA and
Hofbauer LC: RANK ligand and osteoprotegerin in myeloma bone
disease. Blood. 101:2094–2098. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yaccoby S, Wezeman MJ, Henderson A, Kühne
CA and Hofbauer LC: Cancer and the microenvironment:
myeloma-osteoclast interactions as a model. Cancer Res.
64:2016–2023. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nagai M, Kyakumoto S and Sato N: Cancer
cells responsible for humoral hypercalcemia express mRNA encoding a
secreted form of ODF/TRANCE that induces osteoclast formation.
Biochem Biophys Res Commun. 269:532–536. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tada T, Jimi E, Okamoto M, Ozeki S and
Okabe K: Oral squamous cell carcinoma cells induce osteoclast
differentiation by suppression of osteoprotegerin expression in
osteoblasts. Int J Cancer. 116:253–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kayamori K, Sakamoto K, Nakashima T, et
al: Roles of interleukin-6 and parathyroid hormone-related peptide
in osteoclast formation associated with oral cancers: significance
of interleukin-6 synthesized by stromal cells in response to cancer
cells. Am J Pathol. 176:968–980. 2010. View Article : Google Scholar
|
41
|
Chuang FH, Hsue SS, Wu CW and Chen YK:
Immunohistochemical expression of RANKL, RANK, and OPG in human
oral squamous cell carcinoma. J Oral Pathol Med. 38:753–759. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Farrugia AN, Atkins GJ, To LB, et al:
Receptor activator of nuclear factor-κB ligand expression by human
myeloma cells mediates osteoclast formation in vitro and correlates
with bone destruction in vivo. Cancer Res. 63:5438–5445. 2003.
|
43
|
Giuliani N, Bataille R, Mancini C,
Lazzaretti M and Barillé S: Myeloma cells induce imbalance in the
osteoprotegerin/osteoprotegerin ligand system in the human bone
marrow environment. Blood. 98:3527–3533. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ohshiba T, Miyaura C, Inada M and Ito A:
Role of prostaglandin E produced by osteoblasts in osteolysis due
to bone metastasis. Biochem Biophys Res Commun. 300:957–964. 2003.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Tada T, Shin M, Fukushima H, Okabe K,
Ozeki S, Okamoto M and Jimi E: Oral squamous cell carcinoma cells
modulate osteoclast function by RANKL-dependent and -independent
mechanisms. Cancer Lett. 274:126–131. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Jimi E, Nakamura I, Duong LT, Ikebe T,
Takahashi N, Rodan GA and Suda T: Interleukin 1 induces
multinucleation and bone-resorbing activity of osteoclasts in the
absence of osteoblasts/stromal cells. Exp Cell Res. 247:84–93.
1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jones DH, Nakashima T, Sanchez OH, et al:
Regulation of cancer cell migration and bone metastasis by RANKL.
Nature. 440:692–696. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shin M, Matsuo K, Tada T, et al: The
inhibition of RANKL/RANK signaling by osteoprotegerin suppresses
bone invasion by oral squamous cell carcinoma cells.
Carcinogenesis. 32:1634–1640. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Body JJ, Greipp P, Coleman RE, et al: A
phase I study of AMGN-0007, a recombinant osteoprotegerin
construct, in patients with multiple myeloma or breast carcinoma
related bone metastases. Cancer. 97:887–892. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bekker PJ, Holloway D, Nakanishi A,
Arrighi M, Leese PT and Dunstan CR: The effect of a single dose of
osteoprotegerin in postmenopausal women. J Bone Miner Res.
16:348–360. 2001. View Article : Google Scholar : PubMed/NCBI
|
51
|
Roodman GD and Dougall WC: RANK ligand as
a therapeutic target for bone metastases and multiple myeloma.
Cancer Treatment Rev. 34:143–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Steger GG and Bartsch R: Denosumab for the
treatment of bone metastases in breast cancer: evidence and
opinion. Ther Adv Med Oncol. 3:233–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kyrgidis A and Toulis KA:
Denosumab-related osteonecrosis of the jaws. Osteoporos Int.
22:369–370. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Choi S and Myers JN: Molecular
pathogenesis of oral squamous cell carcinoma: implications for
therapy. J Dent Res. 87:14–32. 2008. View Article : Google Scholar : PubMed/NCBI
|