1.
|
Calderwood SK, Khaleque MA, Sawyer DB and
Ciocca DR: Heat shock proteins in cancer: chaperones of
tumorigenesis. Trends Biochem Sci. 31:164–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Gurbuxani S, Schmitt E, Cande C, et al:
Heat shock protein 70 binding inhibits the nuclear import of
apoptosis-inducing factor. Oncogene. 22:6669–6678. 2003. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Garrido C, Brunet M, Didelot C, Zermati Y,
Schmitt E and Kroemer G: Heat shock proteins 27 and 70:
anti-apoptotic proteins with tumorigenic properties. Cell Cycle.
5:2592–2601. 2006. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Ravagnan L, Gurbuxani S, Susin SA, et al:
Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat
Cell Biol. 3:839–843. 2001. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Nylandsted J, Brand K and Jaattela M: Heat
shock protein 70 is required for the survival of cancer cells. Ann
NY Acad Sci. 926:122–125. 2000. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Jego G, Hazoume A, Seigneuric R and
Garrido C: Targeting heat shock proteins in cancer. Cancer Lett.
Nov 13–2010.(Epub ahead of print).
|
7.
|
Ponnala S, Chetty C, Veeravalli KK, Dinh
DH, Klopfenstein JD and Rao JS: MMP-9 silencing regulates hTERT
expression via beta1 integrin-mediated FAK signaling and induces
senescence in glioma xenograft cells. Cell Signal. 23:2065–2075.
2011. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Shen CX, Wen Z, Qian YH, Mu SF and Guan
XF: Targeted gene therapy of nasopharyngeal cancer in vitro and in
vivo by enhanced thymidine kinase expression driven by human TERT
promoter and CMV enhancer. J Exp Clin Cancer Res. 29:942010.
View Article : Google Scholar : PubMed/NCBI
|
9.
|
Li JT, Bian K, Zhang AL, Kim DH, et al:
Targeting different types of human meningioma and glioma cells
using a novel adenoviral vector expressing GFP-TRAIL fusion protein
from hTERT promoter. Cancer Cell Int. 11:352011. View Article : Google Scholar
|
10.
|
Zheng MM, Zhou XY, Wang LP and Wang ZG:
Experimental research of RB94 gene transfection into retinoblastoma
cells using ultrasound-targeted microbubble destruction. Ultrasound
Med Biol. 38:1058–1066. 2012. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Li HL, Zheng XZ, Wang HP, Li F, Wu Y and
Du LF: Ultrasound-targeted microbubble destruction enhances
AAV-mediated gene transfection in human RPE cells in vitro and rat
retina in vivo. Gene Ther. 16:1146–1153. 2009. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Park J, Fan Z and Deng CX: Effects of
shear stress cultivation on cell membrane disruption and
intracellular calcium concentration in sonoporation of endothelial
cells. J Biomech. 44:164–169. 2011. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Brawley OW: Trends in prostate cancer in
the United States. J Natl Cancer Inst Monogr. 2012:152–156. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14.
|
Ewert K, Slack NL, Ahmad A, et al:
Cationic lipid-DNA complexes for gene therapy: understanding the
relationship between complex structure and gene delivery pathways
at the molecular level. Curr Med Chem. 11:133–149. 2004. View Article : Google Scholar
|
15.
|
Onimaru M, Ohuchida K, Mizumoto K, et al:
hTERT-promoter-dependent oncolytic adenovirus enhances the
transduction and therapeutic efficacy of replication-defective
adenovirus vectors in pancreatic cancer cells. Cancer Sci.
101:735–742. 2010. View Article : Google Scholar
|
16.
|
Braunstein I, Cohen-Barak O, Shachaf C, et
al: Human telomerase reverse transcriptase promoter regulation in
normal and malignant human ovarian epithelial cells. Cancer Res.
61:5529–5536. 2001.PubMed/NCBI
|
17.
|
Majumdar AS, Hughes DE, Lichtsteiner SP,
Wang Z, Lebkowski JS and Vasserot AP: The telomerase reverse
transcriptase promoter drives efficacious tumor suicide gene
therapy while preventing hepatotoxicity encountered with
constitutive promoters. Gene Ther. 8:568–578. 2001. View Article : Google Scholar
|
18.
|
Gu J and Fang B: Telomerase
promoter-driven cancer gene therapy. Cancer Biol Ther. 2:S64–S70.
2003.PubMed/NCBI
|
19.
|
Carambula SF, Matikainen T, Lynch MP, et
al: Caspase-3 is a pivotal mediator of apoptosis during regression
of the ovarian corpus luteum. Endocrinology. 143:1495–1501. 2002.
View Article : Google Scholar : PubMed/NCBI
|
20.
|
Ninomiya E, Ito Y, Shibata MA, Kawashima
K, Sakamoto T, Maruyama E, et al: The activation of caspase-3 and
DNA fragmentation in B cells phagocytosed by macrophages. Med
Electron Microsc. 36:87–93. 2003.PubMed/NCBI
|
21.
|
Yudina A and Moonen C: Ultrasound-induced
cell permeabilisation and hyperthermia: strategies for local
delivery of compounds with intracellular mode of action. Int J
Hyperthermia. 28:311–319. 2012. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Safinya CR: Structures of lipid-DNA
complexes: supramolecular assembly and gene delivery. Curr Opin
Struct Biol. 11:440–448. 2001. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Vitor MT, Bergami-Santos PC, Barbuto JA,
De La and Torre LG: Cationic liposomes as non-viral vector for RNA
delivery in cancer immunotherapy. Recent Pat Drug Deliv Formul. Dec
31–2012.(Epub ahead of print).
|
24.
|
Feril LB Jr, Kondo T, Zhao QL, et al:
Enhancement of ultra-sound-induced apoptosis and cell lysis by
echo-contrast agents. Ultrasound Med Biol. 29:331–337. 2003.
View Article : Google Scholar : PubMed/NCBI
|
25.
|
Honda H, Zhao QL and Kondo T: Effects of
dissolved gases and an echo contrast agent on apoptosis induced by
ultrasound and its mechanism via the mitochondria-caspase pathway.
Ultrasound Med Biol. 28:673–682. 2002. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Miller MW, Everbach EC, Cox C, Knapp RR,
Brayman AA and Sherman TA: A comparison of the hemolytic potential
of Optison and Albunex in whole human blood in vitro: acoustic
pressure, ultrasound frequency, donor and passive cavitation
detection considerations. Ultrasound Med Biol. 27:709–721. 2001.
View Article : Google Scholar
|
27.
|
Datiles MJ, Johnson EA and McCarty RE:
Inhibition of the ATPase activity of the catalytic portion of ATP
synthases by cationic amphiphiles. Biochim Biophys Acta.
1777:362–368. 2008. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Krasovitski B, Frenkel V, Shoham S and
Kimmel E: Intramembrane cavitation as a unifying mechanism for
ultrasound-induced bioeffects. Proc Natl Acad Sci USA.
108:3258–3263. 2011. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Zhou Y, Shi J, Cui J and Deng CX: Effects
of extracellular calcium on cell membrane resealing in
sonoporation. J Control Release. 126:34–43. 2008. View Article : Google Scholar : PubMed/NCBI
|