1.
|
Balkwill F and Mantovani A: Inflammation
and cancer: back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Lewis CE, Leek R, Harris A and McGee JO:
Cytokine regulation of angiogenesis in breast cancer: the role of
tumor-associated macrophages. J Leukoc Biol. 57:747–751.
1995.PubMed/NCBI
|
4.
|
Bingle L, Brown NJ and Lewis CE: The role
of tumour-associated macrophages in tumour progression:
implications for new anticancer therapies. J Pathol. 196:254–265.
2002. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Leek RD and Harris AL: Tumor-associated
macrophages in breast cancer. J Mammary Gland Biol Neoplasia.
7:177–189. 2002. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Gordon S and Taylor PR: Monocyte and
macrophage heterogeneity. Nat Rev Immunol. 5:953–964. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7.
|
Winston BW, Krein PM, Mowat C and Huang Y:
Cytokine-induced macrophage differentiation: a tale of 2 genes.
Clin Invest Med. 22:236–255. 1999.PubMed/NCBI
|
8.
|
Fujimoto H, Sangai T, Ishii G, et al:
Stromal MCP-1 in mammary tumors induces tumor-associated macrophage
infiltration and contributes to tumor progression. Int J Cancer.
125:1276–1284. 2009. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Bernhagen J, Krohn R, Lue H, et al: MIF is
a noncognate ligand of CXC chemokine receptors in inflammatory and
atherogenic cell recruitment. Nat Med. 13:587–596. 2007. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Bando H, Matsumoto G, Bando M, et al:
Expression of macrophage migration inhibitory factor in human
breast cancer: association with nodal spread. Jpn J Cancer Res.
93:389–396. 2002. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Hagemann T, Wilson J, Kulbe H, et al:
Macrophages induce invasiveness of epithelial cancer cells via
NF-kappa B and JNK. J Immunol. 175:1197–1205. 2005. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Mosser DM: The many faces of macrophage
activation. J Leukoc Biol. 73:209–212. 2003. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Verreck FA, de Boer T, Langenberg DM, et
al: Human IL-23-producing type 1 macrophages promote but
IL-10-producing type 2 macrophages subvert immunity to
(myco)bacteria. Proc Natl Acad Sci USA. 101:4560–4565. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14.
|
Solinas G, Germano G, Mantovani A and
Allavena P: Tumor-associated macrophages (TAM) as major players of
the cancer-related inflammation. J Leukoc Biol. 86:1065–1073. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Lamagna C, Aurrand-Lions M and Imhof BA:
Dual role of macrophages in tumor growth and angiogenesis. J Leukoc
Biol. 80:705–713. 2006. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Benoit M, Desnues B and Mege JL:
Macrophage polarization in bacterial infections. J Immunol.
181:3733–3739. 2008. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Mantovani A, Sica A, Sozzani S, Allavena
P, Vecchi A and Locati M: The chemokine system in diverse forms of
macrophage activation and polarization. Trends Immunol. 25:677–686.
2004. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Pollard JW: Tumour-educated macrophages
promote tumour progression and metastasis. Nat Rev Cancer. 4:71–78.
2004. View
Article : Google Scholar : PubMed/NCBI
|
19.
|
Mosser DM and Edwards JP: Exploring the
full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969.
2008. View
Article : Google Scholar : PubMed/NCBI
|
20.
|
Brown JM and Giaccia AJ: The unique
physiology of solid tumors: opportunities (and problems) for cancer
therapy. Cancer Res. 58:1408–1416. 1998.PubMed/NCBI
|
21.
|
Vaupel P, Kelleher DK and Hockel M: Oxygen
status of malignant tumors: pathogenesis of hypoxia and
significance for tumor therapy. Semin Oncol. 28:29–35. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22.
|
Murdoch C, Giannoudis A and Lewis CE:
Mechanisms regulating the recruitment of macrophages into hypoxic
areas of tumors and other ischemic tissues. Blood. 104:2224–2234.
2004. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Turner L, Scotton C, Negus R and Balkwill
F: Hypoxia inhibits macrophage migration. Eur J Immunol.
29:2280–2287. 1999. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Grimshaw MJ and Balkwill FR: Inhibition of
monocyte and macrophage chemotaxis by hypoxia and inflammation - a
potential mechanism. Eur J Immunol. 31:480–489. 2001. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Wain JH, Kirby JA and Ali S: Leucocyte
chemotaxis: examination of mitogen-activated protein kinase and
phosphoinositide 3-kinase activation by monocyte chemoattractant
proteins-1, -2, -3 and -4. Clin Exp Immunol. 127:436–444. 2002.
View Article : Google Scholar : PubMed/NCBI
|
26.
|
Leek RD, Lewis CE, Whitehouse R, Greenall
M, Clarke J and Harris AL: Association of macrophage infiltration
with angiogenesis and prognosis in invasive breast carcinoma.
Cancer Res. 56:4625–4629. 1996.PubMed/NCBI
|
27.
|
Burke B, Tang N, Corke KP, et al:
Expression of HIF-1alpha by human macrophages: implications for the
use of macrophages in hypoxia-regulated cancer gene therapy. J
Pathol. 196:204–212. 2002. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Kimbro KS and Simons JW: Hypoxia-inducible
factor-1 in human breast and prostate cancer. Endocr Relat Cancer.
13:739–749. 2006. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Giaccia A, Siim BG and Johnson RS: HIF-1
as a target for drug development. Nat Rev Drug Discov. 2:803–811.
2003. View
Article : Google Scholar : PubMed/NCBI
|
30.
|
Lewis JS, Landers RJ, Underwood JC, Harris
AL and Lewis CE: Expression of vascular endothelial growth factor
by macrophages is upregulated in poorly vascularized areas of
breast carcinomas. J Pathol. 192:150–158. 2000. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Leek RD, Talks KL, Pezzella F, et al:
Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha)
expression in tumor-infiltrative macrophages to tumor angiogenesis
and the oxidative thymidine phosphorylase pathway in Human breast
cancer. Cancer Res. 62:1326–1329. 2002.
|
32.
|
Murata Y, Ohteki T, Koyasu S and Hamuro J:
IFN-gamma and pro-inflammatory cytokine production by
antigen-presenting cells is dictated by intracellular thiol redox
status regulated by oxygen tension. Eur J Immunol. 32:2866–2873.
2002. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Doedens AL, Stockmann C, Rubinstein MP, et
al: Macrophage expression of hypoxia-inducible factor-1 alpha
suppresses T-cell function and promotes tumor progression. Cancer
Res. 70:7465–7475. 2010. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Schmeisser A, Marquetant R, Illmer T, et
al: The expression of macrophage migration inhibitory factor 1alpha
(MIF 1alpha) in human atherosclerotic plaques is induced by
different proatherogenic stimuli and associated with plaque
instability. Atherosclerosis. 178:83–94. 2005. View Article : Google Scholar
|
35.
|
Oda S, Oda T, Nishi K, et al: Macrophage
migration inhibitory factor activates hypoxia-inducible factor in a
p53-dependent manner. PLoS One. 3:e22152008. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Yu X, Lin SG, Huang XR, et al: Macrophage
migration inhibitory factor induces MMP-9 expression in macrophages
via the MEK-ERK MAP kinase pathway. J Interferon Cytokine Res.
27:103–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Leek RD, Hunt NC, Landers RJ, Lewis CE,
Royds JA and Harris AL: Macrophage infiltration is associated with
VEGF and EGFR expression in breast cancer. J Pathol. 190:430–436.
2000. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Bingle L, Lewis CE, Corke KP, Reed MW and
Brown NJ: Macrophages promote angiogenesis in human breast tumour
spheroids in vivo. Br J Cancer. 94:101–107. 2006. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Vicioso L, Gonzalez FJ, Alvarez M, et al:
Elevated serum levels of vascular endothelial growth factor are
associated with tumor-associated macrophages in primary breast
cancer. Am J Clin Pathol. 125:111–118. 2006. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Lin EY, Li JF, Gnatovskiy L, et al:
Macrophages regulate the angiogenic switch in a mouse model of
breast cancer. Cancer Res. 66:11238–11246. 2006. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Lin EY, Li JF, Bricard G, et al: Vascular
endothelial growth factor restores delayed tumor progression in
tumors depleted of macrophages. Mol Oncol. 1:288–302. 2007.
View Article : Google Scholar : PubMed/NCBI
|
42.
|
Ojalvo LS, King W, Cox D and Pollard JW:
High-density gene expression analysis of tumor-associated
macrophages from mouse mammary tumors. Am J Pathol. 174:1048–1064.
2009. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Tang X, Mo C, Wang Y, Wei D and Xiao H:
Anti-tumour strategies aiming to target tumour-associated
macrophages. Immunology. 138:93–104. 2013. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Nagakawa Y, Aoki T, Kasuya K, Tsuchida A
and Koyanagi Y: Histologic features of venous invasion, expression
of vascular endothelial growth factor and matrix
metalloproteinase-2 and matrix metalloproteinase-9, and the
relation with liver metastasis in pancreatic cancer. Pancreas.
24:169–178. 2002. View Article : Google Scholar
|
45.
|
Duffy MJ, O'Grady P, Devaney D, O'Siorain
L, Fennelly JJ and Lijnen HJ: Urokinase-plasminogen activator, a
marker for aggressive breast carcinomas. Preliminary report.
Cancer. 62:531–533. 1988. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Ulisse S, Baldini E, Sorrenti S and
D'Armiento M: The urokinase plasminogen activator system: a target
for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47.
|
Kantelhardt EJ, Vetter M, Schmidt M, et
al: Prospective evaluation of prognostic factors uPA/PAI-1 in
node-negative breast cancer: phase III NNBC3-Europe trial (AGO,
GBG, EORTCPBG) comparing 6xFEC versus 3xFEC/3xDocetaxel. BMC
Cancer. 11:1402011. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Wyckoff JB, Wang Y, Lin EY, et al: Direct
visualization of macrophage-assisted tumor cell intravasation in
mammary tumors. Cancer Res. 67:2649–2656. 2007. View Article : Google Scholar : PubMed/NCBI
|
49.
|
Ingman WV, Wyckoff J, Gouon-Evans V,
Condeelis J and Pollard JW: Macrophages promote collagen
fibrillogenesis around terminal end buds of the developing mammary
gland. Dev Dyn. 235:3222–3229. 2006. View Article : Google Scholar : PubMed/NCBI
|
50.
|
Rakoff-Nahoum S and Medzhitov R: Toll-like
receptors and cancer. Nat Rev Cancer. 9:57–63. 2009. View Article : Google Scholar
|
51.
|
Gonzalez-Reyes S, Marin L, Gonzalez L, et
al: Study of TLR3, TLR4 and TLR9 in breast carcinomas and their
association with metastasis. BMC Cancer. 10:6652010. View Article : Google Scholar : PubMed/NCBI
|
52.
|
Siednienko J and Miggin SM: Expression
analysis of the Toll-like receptors in human peripheral blood
mononuclear cells. Methods Mol Biol. 517:3–14. 2009. View Article : Google Scholar : PubMed/NCBI
|
53.
|
Kim S, Takahashi H, Lin WW, et al:
Carcinoma-produced factors activate myeloid cells through TLR2 to
stimulate metastasis. Nature. 457:102–106. 2009. View Article : Google Scholar : PubMed/NCBI
|
54.
|
Naugler WE, Sakurai T, Kim S, et al:
Gender disparity in liver cancer due to sex differences in
MyD88-dependent IL-6 production. Science. 317:121–124. 2007.
View Article : Google Scholar
|
55.
|
Sandholm J, Kauppila JH, Pressey C, et al:
Estrogen receptor-alpha and sex steroid hormones regulate Toll-like
receptor-9 expression and invasive function in human breast cancer
cells. Breast Cancer Res Treat. 132:411–419. 2012. View Article : Google Scholar
|
56.
|
Apetoh L, Ghiringhelli F, Tesniere A, et
al: Toll-like receptor 4-dependent contribution of the immune
system to anticancer chemotherapy and radiotherapy. Nat Med.
13:1050–1059. 2007. View
Article : Google Scholar
|
57.
|
Apetoh L, Tesniere A, Ghiringhelli F,
Kroemer G and Zitvogel L: Molecular interactions between dying
tumor cells and the innate immune system determine the efficacy of
conventional anti-cancer therapies. Cancer Res. 68:4026–4030. 2008.
View Article : Google Scholar : PubMed/NCBI
|
58.
|
Kim SY, Choi YJ, Joung SM, Lee BH, Jung YS
and Lee JY: Hypoxic stress upregulates the expression of Toll-like
receptor 4 in macrophages via hypoxia-inducible factor. Immunology.
129:516–524. 2010. View Article : Google Scholar : PubMed/NCBI
|
59.
|
Tlsty TD and Coussens LM: Tumor stroma and
regulation of cancer development. Annu Rev Pathol. 1:119–150. 2006.
View Article : Google Scholar : PubMed/NCBI
|
60.
|
Allavena P, Signorelli M, Chieppa M, et
al: Anti-inflammatory properties of the novel antitumor agent
yondelis (trabectedin): inhibition of macrophage differentiation
and cytokine production. Cancer Res. 65:2964–2971. 2005. View Article : Google Scholar
|
61.
|
Dineen SP, Lynn KD, Holloway SE, et al:
Vascular endothelial growth factor receptor 2 mediates macrophage
infiltration into orthotopic pancreatic tumors in mice. Cancer Res.
68:4340–4346. 2008. View Article : Google Scholar : PubMed/NCBI
|
62.
|
Miller K, Wang M, Gralow J, et al:
Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic
breast cancer. N Engl J Med. 357:2666–2676. 2007. View Article : Google Scholar : PubMed/NCBI
|
63.
|
Miles DW, Chan A, Dirix LY, et al: Phase
III study of bevacizumab plus docetaxel compared with placebo plus
docetaxel for the first-line treatment of human epidermal growth
factor receptor 2-negative metastatic breast cancer. J Clin Oncol.
28:3239–3247. 2010. View Article : Google Scholar : PubMed/NCBI
|
64.
|
Gnant M, Mlineritsch B, Schippinger W, et
al: Endocrine therapy plus zoledronic acid in premenopausal breast
cancer. N Engl J Med. 360:679–691. 2009. View Article : Google Scholar : PubMed/NCBI
|
65.
|
Green JR and Guenther A: The backbone of
progress - preclinical studies and innovations with zoledronic
acid. Crit Rev Oncol Hematol. 77(Suppl 1): S3–S12. 2011. View Article : Google Scholar : PubMed/NCBI
|
66.
|
Giraudo E, Inoue M and Hanahan D: An
amino-bisphosphonate targets MMP-9-expressing macrophages and
angiogenesis to impair cervical carcinogenesis. J Clin Invest.
114:623–633. 2004. View Article : Google Scholar : PubMed/NCBI
|
67.
|
Guiducci C, Vicari AP, Sangaletti S,
Trinchieri G and Colombo MP: Redirecting in vivo elicited tumor
infiltrating macrophages and dendritic cells towards tumor
rejection. Cancer Res. 65:3437–3446. 2005.PubMed/NCBI
|