1.
|
Lehrer RI, Lichtenstein AK and Ganz T:
Defensins: antimicrobial and cytotoxic peptides of mammalian cells.
Annu Rev Immunol. 11:105–128. 1993. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Zasloff M: Antimicrobial peptides of
multicellular organisms. Nature. 415:389–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Koczulla AR and Bals R: Antimicrobial
peptides: current status and therapeutic potentials. Drugs.
63:389–406. 2003. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Bulet P, Hetru C, Dimarcq JL and Hoffmann
D: Antimicrobial peptides in insects; structure and function. Dev
Comp Immunol. 23:329–344. 1999. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Bulet P and Stocklin R: Insect
antimicrobial peptides: structures, properties and gene regulation.
Protein Pept Lett. 12:3–11. 2005. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Matsuyama K and Natori S: Purification of
3 antibacterial proteins from the culture medium of NIH-Sape-4, an
embryonic cell line of Sarcophaga peregrina. J Biol Chem.
263:17112–17116. 1988.PubMed/NCBI
|
7.
|
Bulet P, Cociancich S, Reuland M, Sauber
F, Bischoff R, Hegy G, Van Dorsselaer A, Hetru C and Hoffmann JA: A
novel insect defensin mediates the inducible antibacterial activity
in larvae of the dragonfly Aeschna cyanea (Paleoptera,
Odonata). Eur J Biochem. 209:977–984. 1992. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Baker MA, Maloy WL, Zasloff M and Jacob
LS: Anticancer efficacy of Magainin2 and analogue peptides. Cancer
Res. 53:3052–3057. 1993.PubMed/NCBI
|
9.
|
Moore AJ, Devine DA and Bibby MC:
Preliminary experimental anticancer activity of cecropins. Pept
Res. 7:265–269. 1994.PubMed/NCBI
|
10.
|
Soballe PW, Maloy WL, Myrga ML, Jacob LS
and Herlyn M: Experimental local therapy of human melanoma with
lytic magainin peptides. Int J Cancer. 60:280–284. 1995. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Xiao YC, Huang YD, Xu PL, Zhou ZQ and Li
XK: Pro-apoptotic effect of cecropin AD on nasopharyngeal carcinoma
cells. Chin Med J (Engl). 119:1042–1046. 2006.PubMed/NCBI
|
12.
|
Iwasaki T, Ishibashi J, Tanaka H, Sato M,
Asaoka A, Taylor D and Yamakawa M: Selective cancer cell
cytotoxicity of enantiomeric 9-mer peptides derived from beetle
defensins depends on negatively charged phosphatidylserine on the
cell surface. Peptides. 30:660–668. 2009. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY,
Kim SR, Suh HJ, Kang BR, Nam SH, Jeon JP, Kim I and Lee DG:
Isolation and characterization of a defensin-like peptide
(Coprisin) from the dung beetle, Copris tripartitus. Int J
Pept. View Article : Google Scholar : 2009.PubMed/NCBI
|
14.
|
Kang JK, Hwang JS, Nam HJ, Ahn KJ, Seok H,
Kim SK, Yun EY, Pothoulakis C, Lamont JT and Kim H: The insect
peptide coprisin prevents Clostridium difficile-mediated
acute inflammation and mucosal damage through selective
antimicrobial activity. Antimicrob Agents Chemother. 55:4850–4857.
2011.PubMed/NCBI
|
15.
|
Kim IW, Kim SJ, Kwon YN, Yun EY, Ahn MY,
Kang DC and Hwang JS: Effects of the synthetic coprisin analog
peptide, CopA3 in pathogenic microorganisms and mammalian cancer
cells. J Microbiol Biotechnol. 22:156–158. 2012. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Kang BR, Kim H, Nam SH, Yun EY, Kim SR,
Ahn MY, Chang JS and Hwang JS: CopA3 peptide from Copris
tripartitus induces apoptosis in human leukemia cells via a
caspase-independent pathway. BMB Rep. 45:85–90. 2012.
|
17.
|
Kim IW, Lee JH, Park HY, Kwon YN, Yun EY,
Nam SH, Kim SR, Ahn MY and Hwang JS: Characterization and cDNA
cloning of a defensin-like peptide, harmoniasin, from Harmonia
axyridis. J Microbiol Biotechnol. 22:1588–1590. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18.
|
Hara T, Kodama H, Kondo M, Wakamatsu K,
Takeda A, Tachi T and Matsuzaki K: Effects of peptide dimerization
on pore formation: antiparallel disulfide-dimerized magainin 2
analogue. Biopolymers. 58:437–446. 2001. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Takei J, Remenyi A, Clarke AR and Dempsey
CE: Self-association of disulfide-dimerized melittin analogues.
Biochemistry. 37:5699–5708. 1998. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Jang WS, Kim CH, Kim KN, Park SY, Lee JH,
Son SM and Lee IH: Biological activities of synthetic analogs of
halocidin, an antimicrobial peptide from the tunicate
Halocynthia aurantium. Antimicrob Agents Chemother.
47:2481–2486. 2003. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Wyllie AH: Apoptosis: An overview. Br Med
Bull. 53:451–465. 1997. View Article : Google Scholar
|
22.
|
Raff M: Cell suicide for beginners.
Nature. 396:119–122. 1998. View
Article : Google Scholar : PubMed/NCBI
|
23.
|
Silphaduang U and Noga EJ: Peptide
antibiotics in mast cells of fish. Nature. 414:268–269. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24.
|
Lin HJ, Huang TC, Muthusamy S, Lee JF,
Duann YF and Lin CH: Piscidin-1, an antimicrobial peptide from fish
(hybrid striped bass Morone saxatilis x M. chrysops),
induces apoptotic and necrotic activity in HT1080 cells. Zoolog
Sci. 29:327–332. 2012. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Diao Y, Han W, Zhao H, Zhu S, Liu X, Feng
X, Gu J, Yao C, Liu S, Sun C and Pan F: Designed synthetic analogs
of the α-helical peptide temporin-La with improved antitumor
efficacies via charge modification and incorporation of the
integrin αvβ3 homing domain. J Pept Sci. 18:476–486. 2012.
|
26.
|
Zeuner A, Eramo A, Testa U, Felli N,
Pelosi E, Mariani G, Srinivasula SM, Alnemri ES, Condorelli G,
Peschle C and De Maria R: Control of erythroid cell production via
caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell
Death Differ. 10:905–913. 2003. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Kitanaka C, Kato K and Tanaka Y: Ras
protein expression and autophagic tumor cell death in
neuroblastoma. Am J Surg Pathol. 31:153–155. 2007. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Li Y, Xiang Q, Zhang Q, Huang Y and Su Z:
Overview on the recent study of antimicrobial peptides: origins,
functions, relative mechanisms and application. Peptides.
37:207–215. 2012. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Shai YC: Molecular recognition between
membrane-spanning peptides. Trends Biochem Sci. 20:460–464. 1995.
View Article : Google Scholar
|
30.
|
Epand RM, Shai YC, Segrest JP and
Anantharamaiah GM: Mechanisms for the modulation of membrane
bilayer properties by amphipathic helical peptides. Biopolymers.
37:319–338. 1995. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Rozek T, Wegener KL, Bowie JH, Olver IN,
Carver JA, Wallace JC and Tyler MJ: The antibiotic and anticancer
active aurein peptides from the Australian Bell Frogs Litoria
aurea and Litoria raniformis the solution structure of
aurein 1.2. Eur J Biochem. 267l:5330–5341. 2000. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Doyle J, Brinkworth CS, Wegener KL, Carver
JA, Llewellyn LE, Olver IN, Bowie JH, Wabnitz PA and Tyler MJ: nNOS
inhibition, antimicrobial and anticancer activity of the amphibian
skin peptide, citropin 1.1 and synthetic modifications. The
solution structure of a modified citropin 11 Eur J Biochem.
270:1141–1153. 2003.PubMed/NCBI
|
33.
|
Hoskin DW and Ramamoorthy A: Studies on
anticancer activities of antimicrobial peptides. Biochim Biophys
Acta. 1778:357–375. 2008. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Mader JS, Richardson A, Salsman J, Top D,
de Antueno R, Duncan R and Hoskin DW: Bovine lactoferricin causes
apoptosis in Jurkat T-leukemia cells by sequential permeabilization
of the cell membrane and targeting of mitochondria. Exp Cell Res.
313:2634–2650. 2007. View Article : Google Scholar : PubMed/NCBI
|