Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review)
- Authors:
- Branislav Ruttkay-Nedecky
- Ana Maria Jimenez Jimenez
- Lukas Nejdl
- Dagmar Chudobova
- Jaromir Gumulec
- Michal Masarik
- Vojtech Adam
- Rene Kizek
-
Affiliations: Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, CZ-613 00 Brno, Czech Republic, Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic - Published online on: September 17, 2013 https://doi.org/10.3892/ijo.2013.2105
- Pages: 1754-1762
This article is mentioned in:
Abstract
Stanley M: Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 117:S5–S10. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lowy DR, Strickland JE and Yuspa SH: Efficient induction of papillomas by Harvey murine sarcoma-virus. Clin Res. 34:A7641986. | |
Joh J, Jenson AB, Proctor M, et al: Molecular diagnosis of a laboratory mouse papillomavirus (MusPV). Exp Mol Pathol. 93:416–421. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mitsouras K, Faulhaber EA, Hui G, et al: Development of a PCR assay to detect papillomavirus infection in the snow leopard. BMC Vet Res. 7:1–11. 2011. View Article : Google Scholar : PubMed/NCBI | |
Badulescu F, Crisan A, Badulescu A and Schenker M: Recent data about the role of human papillomavirus (HPV) in oncogenesis of head and neck cancer. Rom J Morphol Embryol. 51:437–440. 2010.PubMed/NCBI | |
Fakhry C, Westra WH, Cmelak SLA, et al: Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 100:261–269. 2008. View Article : Google Scholar : PubMed/NCBI | |
Syrjanen S: Human papillomavirus (HPV) in head and neck cancer. J Clin Virol. 32:S59–S66. 2005. View Article : Google Scholar : PubMed/NCBI | |
Walden MJ and Aygun N: Head and neck cancer. Semin Roentgenol. 48:75–86. 2013. View Article : Google Scholar | |
Forte T, Niu J, Lockwood GA and Bryant HE: Incidence trends in head and neck cancers and human papillomavirus (HPV)-associated oropharyngeal cancer in Canada, 1992–2009. Cancer Causes Control. 23:1343–1348. 2012. | |
Axell T, Pindborg JJ, Smith CJ and van der Waal I: Oral white lesions with special reference to precancerous and tobacco related lesions: conclusions of an international symposium held in Uppsala, Sweden, May 18–21 1994. J Oral Pathol Med. 25:49–54. 1996.PubMed/NCBI | |
Janicek MF and Averette HE: Cervical cancer: prevention, diagnosis, and therapeutics. CA Cancer J Clin. 51:92–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen YC and Hunter DJ: Molecular epidemiology of cancer. CA Cancer J Clin. 55:45–54. 2005. View Article : Google Scholar | |
De Villiers EM, Fauquet C, Broker TR, Bernard HU and zur Hausen H: Classification of papillomaviruses. Virology. 324:17–27. 2004. | |
Bernard HU, Burk RD, Chen ZG, van Doorslaer K, zur Hausen H and de Villiers EM: Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 401:70–79. 2010. View Article : Google Scholar : PubMed/NCBI | |
Doorbar J, Quint W, Banks L, et al: The biology and life-cycle of human papillomaviruses. Vaccine. 30:F55–F70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen RW, Aaltonen LM and Vaheri A: Human papillomavirus type 16 in head and neck carcinogenesis. Rev Med Virol. 15:351–363. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pfister H: HPV and skin neoplasia. Hautarzt. 59:26–30. 2008.(In German). | |
Steben M and Duarte-Franco E: Human papillomavirus infection: epidemiology and pathophysiology. Gynecol Oncol. 107:S2–S5. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chang KC, Su IJ, Tsai ST, Shieh DB and Jin YT: Pathological features of betel quid-related oral epithelial lesions in Taiwan with special emphasis on the tumor progression and human papillomavirus association. Oncology. 63:362–369. 2002. View Article : Google Scholar | |
Kero K, Rautava J, Syrjanen K, Grenman S and Syrjanen S: Oral mucosa as a reservoir of human papillomavirus: point prevalence, genotype distribution, and incident infections among males in a 7-year prospective study. Eur Urol. 62:1063–1070. 2012. | |
Hong AM, Martin A, Armstrong BK, et al: Human papillomavirus modifies the prognostic significance of T stage and possibly N stage in tonsillar cancer. Ann Oncol. 24:215–219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Milano MT, Peterson CR, Zhang H, Singh DP and Chen Y: Second primary lung cancer after head and neck squamous cell cancer: population-based study of risk factors. Head Neck. 34:1782–1788. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ragin CCR and Taioli E: Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 121:1813–1820. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin KY, Westra WH, Kashima HK, Mounts P and Wu TC: Coinfection of HPV-11 and HPV-16 in a case of laryngeal squamous papillomas with severe dysplasia. Laryngoscope. 107:942–947. 1997. View Article : Google Scholar : PubMed/NCBI | |
Syrjanen KJ, Chang F and Syrjanen SM: HPV infections in etiology of benign and malignant sinonasal, bronchial and oesophageal squamous cell lesions. Eurogin 2000: 4th International Multidisciplinary Congress. Monsonego J: Medimond S R L: 40128 Bologna; pp. 169–179. 2000 | |
Hoffmann M, Klose N, Gottschlich S, et al: Detection of human papillomavirus DNA in benign and malignant sinonasal neoplasms. Cancer Lett. 239:64–70. 2006. View Article : Google Scholar : PubMed/NCBI | |
Syrjanen S: Human papillomavirus infections and oral tumors. Med Microbiol Immunol. 192:123–128. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kashima HK, Kessis T, Hruban RH, Wu TC, Zinreich SJ and Shah KV: Human papilloma virus in sinonasal papillomas and squamous-cell carcinoma. Laryngoscope. 102:973–976. 1992. View Article : Google Scholar : PubMed/NCBI | |
Mansell NJ and Bates GJ: The inverted Schneiderian papilloma: a review and literature report of 43 new cases. Rhinology. 38:97–101. 2000.PubMed/NCBI | |
Zandberg DP, Bhargava R, Badin S and Cullen KJ: The role of human papillomavirus in nongenital cancers. CA Cancer J Clin. 63:57–81. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ustav M, Ustav E, Szymanski P and Stenlund A: Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor-E1. EMBO J. 10:4321–4329. 1991.PubMed/NCBI | |
Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA and Howley PM: Structural and transcriptional analysis of human papillomavirus type-16 sequences in cervical-carcinoma cell-lines. J Virol. 61:962–971. 1987.PubMed/NCBI | |
Bouvard V, Storey A, Pim D and Banks L: Characterization of the human papillomavirus E2 protein - evidence of transactivation and transrepression in cervical keratinocytes. EMBO J. 13:5451–5459. 1994.PubMed/NCBI | |
Foguel D, Silva JL and de Prat-Gay G: Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus E2 protein obtained at high pressure. J Biol Chem. 273:9050–9057. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zur Hausen H: Cervical carcinoma and human papillomavirus: on the road to preventing a major human cancer. J Natl Cancer Inst. 93:252–253. 2001. | |
Barbosa MS, Lowy DR and Schiller JT: Papillomavirus polypeptide-E6 and polypeptide-E7 are zinc-binding proteins. J Virol. 63:1404–1407. 1989.PubMed/NCBI | |
Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM: The E6 oncoprotein encoded by human papillomavirus type-16 and type-18 promotes the degradation of P53. Cell. 63:1129–1136. 1990. View Article : Google Scholar : PubMed/NCBI | |
Vega-Pena A, Illades-Aguiar B, Flores-Alfaro E, Lopez-Bayghen E, Reyes-Maldonado E and Alarcon-Romero LD: Correlation between KI-67 and telomerase expression with in situ hybridization for high-risk human papillomavirus. Arch Biol Sci. 65:81–90. 2013. View Article : Google Scholar | |
Li DS, Dong BL, Hu ZM, et al: A combined assay of hTERT and E6 oncoprotein to identify virus-infected keratinocytes with higher telomerase activity in human papillomaviruses 16 and 18-related bowenoid papulosis. Am J Dermatopathol. 34:813–817. 2012. View Article : Google Scholar | |
Zhao YX, Qi L, Chen F, Zhao Y and Fan CH: Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. Biosens Bioelectron. 41:764–770. 2013. View Article : Google Scholar | |
Wilting SM, Verlaat W, Jaspers A, et al: Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics. 8:220–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dayyani F, Etzel CJ, Liu M, Ho CH, Lippman SM and Tsao AS: Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol. 2:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dyson N, Howley PM, Munger K and Harlow E: The human papilloma virus-16 E7-oncoprotein is able to bind to the retinoblastoma gene-product. Science. 243:934–937. 1989. View Article : Google Scholar : PubMed/NCBI | |
Strati K, Pitot HC and Lambert PF: Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci USA. 103:14152–14157. 2006. View Article : Google Scholar : PubMed/NCBI | |
Smith EM, Pawlita M, Rubenstein LM, Haugen TH, Hamsikova E and Turek LP: Risk factors and survival by HPV-16 E6 and E7 antibody status in human papillomavirus positive head and neck cancer. Int J Cancer. 127:111–117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Doorbar J and Gallimore PH: Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a. J Virol. 61:2793–2799. 1987.PubMed/NCBI | |
Rose BR, Thompson CH, Tattersall MH, O’Brien CJ and Cossart YE: Squamous carcinoma of the head and neck: molecular mechanisms and potential biomarkers. Aust N Z J Surg. 70:601–606. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wiest T, Schwarz E, Enders C, Flechtenmacher C and Bosch FX: Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene. 21:1510–1517. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bedell MA, Jones KH and Laimins LA: The E6-E7 region of human papillomavirus type-18 is sufficient for transformation of NIH-3T3 and RAT-1 cells. J Virol. 61:3635–3640. 1987.PubMed/NCBI | |
Choo KB, Pan CC and Han SH: Integration of human papillomavirus type-16 into cellular DNA of cervical-carcinoma-preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology. 161:259–261. 1987. View Article : Google Scholar | |
Huibregtse JM, Scheffner M and Howley PM: Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with P53. Mol Cell Biol. 13:775–784. 1993.PubMed/NCBI | |
Chellappan S, Kraus VB, Kroger B, et al: Adenovirus-E1A, simian virus-40 tumor-antigen, and human papillomavirus-E7 protein share the capacity to disrupt the interaction between transcription factor-E2F and the retinoblastoma gene-product. Proc Natl Acad Sci USA. 89:4549–4553. 1992. View Article : Google Scholar | |
Cobrinik D, Dowdy SF, Hinds PW, Mittnacht S and Weinberg RA: The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci. 17:312–315. 1992. View Article : Google Scholar : PubMed/NCBI | |
Nevins JR: E2F - a link between the Rb tumor suppressor protein and viral oncoproteins. Science. 258:424–429. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gillison ML, Koch WM, Capone RB, et al: Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 92:709–720. 2000. View Article : Google Scholar : PubMed/NCBI | |
May P and May E: Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 18:7621–7636. 1999.PubMed/NCBI | |
Yu ZK, Geyer RK and Maki CG: MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene. 19:5892–5897. 2000. View Article : Google Scholar : PubMed/NCBI | |
Haupt Y, Maya R, Kazaz A and Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 387:296–299. 1997. View Article : Google Scholar : PubMed/NCBI | |
Huibregtse JM, Scheffner M and Howley PM: A cellular protein mediates association of P53 with the E6 oncoprotein of human papillomavirus type-16 or type-18. EMBO J. 10:4129–4135. 1991.PubMed/NCBI | |
Chen JJ, Hong YH, Rustamzadeh E, Baleja JD and Androphy EJ: Identification of an alpha helical motif sufficient for association with papillomavirus E6. J Biol Chem. 273:13537–13544. 1998. View Article : Google Scholar : PubMed/NCBI | |
Elston RC, Napthine S and Doorbar J: The identification of a conserved binding motif within human papillomavirus type 16 E6 binding peptides, E6AP and E6BP. J Gen Virol. 79:371–374. 1998.PubMed/NCBI | |
Huibregtse JM, Scheffner M and Howley PM: Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with P53, and ubiquitination of associated proteins. Mol Cell Biol. 13:4918–4927. 1993.PubMed/NCBI | |
Yu Y, Yang AM, Hu SK, Zhang JH and Yan H: Significance of human papillomavirus 16/18 infection in association with p53 mutation in lung carcinomas. Clin Respir J. 7:27–33. 2013. View Article : Google Scholar : PubMed/NCBI | |
Katori H, Nozawa A and Tsukuda M: Relationship between p21 and p53 expression, human papilloma virus infection and malignant transformation in sinonasal-inverted papilloma. Clin Oncol. 18:300–305. 2006. View Article : Google Scholar | |
Fujita S, Senba M, Kumatori A, Hayashi T, Ikeda T and Toriyama K: Human papillomavirus infection in oral verrucous carcinoma: genotyping analysis and inverse correlation with p53 expression. Pathobiology. 75:257–264. 2008. View Article : Google Scholar | |
Reschner A, Bontems S, Le Gac S, et al: Ruthenium oligonucleotides, targeting HPV16 E6 oncogene, inhibit the growth of cervical cancer cells under illumination by a mechanism involving p53. Gene Ther. 20:435–443. 2013. View Article : Google Scholar : PubMed/NCBI | |
Togtema M, Pichardo S, Jackson R, Lambert PF, Curiel L and Zehbe I: Sonoporation delivery of monoclonal antibodies against human papillomavirus 16 E6 restores p53 expression in transformed cervical keratinocytes. PLoS One. 7:1–12. 2012. View Article : Google Scholar | |
Habbous S, Pang V, Eng L, et al: p53 Arg72Pro polymorphism, HPV status and initiation, progression, and development of cervical cancer: a systematic review and meta-analysis. Clin Cancer Res. 18:6407–6415. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen SP, Hsu NY, Wu JY, et al: Association of p53 codon 72 genotypes and clinical outcome in human papillomavirus-infected lung cancer patients. Ann Thorac Surg. 95:1196–1203. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grossman SR and Laimins LA: E6-protein of human papillomavirus type-18 binds zinc. Oncogene. 4:1089–1093. 1989.PubMed/NCBI | |
Kanda T, Watanabe S, Zanma S, Sato H, Furuno A and Yoshiike K: Human papillomavirus type-16 E6 proteins with glycine substitution for cysteine in the metal-binding motif. Virology. 185:536–543. 1991. View Article : Google Scholar : PubMed/NCBI | |
Beerheide W, Bernard HU, Tan YJ, Ganesan A, Rice WG and Ting AE: Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J Natl Cancer Inst. 91:1211–1220. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chan SY, Delius H, Halpern AL and Bernard HU: Analysis of genomic sequences of 95 papillomavirus types - uniting typing, phylogeny, and taxonomy. J Virol. 69:3074–3083. 1995.PubMed/NCBI | |
Ullman CG, Haris PI, Galloway DA, Emery VC and Perkins SJ: Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7. Biochem J. 319:229–239. 1996. | |
Griffin H, Elston R, Jackson D, et al: Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J Mol Biol. 355:360–378. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann H, Degenkolbe R, Bernard HU and O’Connor MJ: The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol. 73:6209–6219. 1999.PubMed/NCBI | |
Jong JE, Jeong KW, Shin H, Hwang LR, Lee D and Seo T: Human papillomavirus type 16 E6 protein inhibits DNA fragmentation via interaction with DNA fragmentation factor 40. Cancer Lett. 324:109–117. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mavromatis KO, Jones DL, Mukherjee R, Yee C, Grace M and Munger K: The carboxyl-terminal zinc-binding domain of the human papillomavirus E7 protein can be functionally replaced by the homologous sequences of the E6 protein. Virus Res. 52:109–118. 1997. View Article : Google Scholar | |
Wayengera M: Zinc finger arrays binding human papillomavirus types 16 and 18 genomic DNA: precursors of gene-therapeutics for in-situ reversal of associated cervical neoplasia. Theor Biol Med Model. 9:1–13. 2012. View Article : Google Scholar | |
Cannavo I, Benchetrit M, Loubatier C, Michel G, Lemichez E and Giordanengo V: Characterization of a cluster of oncogenic mutations in E6 of a human papillomavirus 83 variant isolated from a high-grade squamous intraepithelial lesion. J Gen Virol. 92:2428–2436. 2011. View Article : Google Scholar : PubMed/NCBI | |
Avvakumov N, Torchia J and Mymryk JS: Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene. 22:3833–3841. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mino T, Mori T, Aoyama Y and Sera T: Cell-permeable artificial zinc-finger proteins as potent antiviral drugs for human papillomaviruses. Arch Virol. 153:1291–1298. 2008. View Article : Google Scholar : PubMed/NCBI | |
Olthof NC, Straetmans J, Snoeck R, Ramaekers FCS, Kremer B and Speel EJM: Next-generation treatment strategies for human papillomavirus-related head and neck squamous cell carcinoma: where do we go? Rev Med Virol. 22:88–105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Vallve S, Alonso A and Bravo IG: Papillomaviruses: different genes have different histories. Trends Microbiol. 13:514–521. 2005. View Article : Google Scholar : PubMed/NCBI | |
Van Doorslaer K, Sidi A, Zanier K, et al: Identification of unusual E6 and E7 proteins within avian papillomaviruses: cellular localization, biophysical characterization, and phylogenetic analysis. J Virol. 83:8759–8770. 2009. | |
Cole ST and Danos O: Nucleotide-sequence and comparative-analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol. 193:599–608. 1987. View Article : Google Scholar : PubMed/NCBI | |
Gammoh N, Grm HS, Massimi P and Banks L: Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator. J Virol. 80:1787–1797. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al: The role of metallothionein in oxidative stress. Int J Mol Sci. 14:6044–6066. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krizkova S, Ryvolova M, Hrabeta J, et al: Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev. 44:287–301. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eckschlager T, Adam V, Hrabeta J, Figova K and Kizek R: Metallothioneins and cancer. Curr Protein Pept Sci. 10:360–375. 2009. View Article : Google Scholar : PubMed/NCBI | |
Krizkova S, Fabrik I, Adam V, Hrabeta J, Eckschlager T and Kizek R: Metallothionein - a promising tool for cancer diagnostics. Bratisl Lek Listy. 110:93–97. 2009.PubMed/NCBI | |
Babula P, Masarik M, Adam V, et al: Mammalians’ metallothioneins and their properties and functions. Metallomics. 4:739–750. 2012. | |
Krejcova L, Fabrik I, Hynek D, et al: Metallothionein electrochemically determined using Brdicka reaction as a promising blood marker of head and neck malignant tumours. Int J Electrochem Sci. 7:1767–1784. 2012. | |
Sochor J, Hynek D, Krejcova L, et al: Study of metallothionein role in spinocellular carcinoma tissues of head and neck tumours using Brdicka reaction. Int J Electrochem Sci. 7:2136–2152. 2012. | |
Masarik M, Cernei N, Majzlik P, et al: Level of metallothionein, glutathione and heat-stable proteins in tumours from patients with head and neck cancer. Int J Mol Med. 26:S462010. | |
Dutsch-Wicherek M, Lazar A, Tomaszewska R, Kazmierczak W and Wicherek L: Analysis of metallothionein and vimentin immunoreactivity in pharyngeal squamous cell carcinoma and its microenvironment. Cell Tissue Res. 352:341–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jayasurya A, Bay BH, Yap WM, Tan NG and Tan BKH: Proliferative potential in nasopharyngeal carcinoma: correlations with metallothionein expression and tissue zinc levels. Carcinogenesis. 21:1809–1812. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dutsch-Wicherek M, Popiela TJ, Klimek M, et al: Metallothionein stroma reaction in tumor adjacent healthy tissue in head and neck squamous cell carcinoma and breast adenocarcinoma. Neuroendocrinol Lett. 26:567–574. 2005.PubMed/NCBI | |
Babula P, Kohoutkova V, Opatrilova R, Dankova I, Masarik M and Kizek R: Pharmaceutical importance of zinc and metallothionein in cell signalling. Chim Oggi-Chem Today. 28:18–21. 2010. | |
Gumulec J, Masarik M, Krizkova S, et al: Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem. 18:5041–5051. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meplan C, Richard MJ and Hainaut P: Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 19:5227–5236. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hainaut P and Mann K: Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal. 3:611–623. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pintus SS, Ivanisenko NV, Demenkov PS, et al: The substitutions G245C and G245D in the Zn2+-binding pocket of the p53 protein result in differences of conformational flexibility of the DNA-binding domain. J Biomol Struct Dyn. 31:78–86. 2013.PubMed/NCBI | |
Tohyama C, Suzuki JS, Hemelraad J, Nishimura N and Nishimura H: Induction of metallothionein and its localization in the nucleus of rat hepatocytes after partial-hepatectomy. Hepatology. 18:1193–1201. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tsujikawa K, Imai T, Kakutani M, et al: Localization of metallothionein in nuclei of growing primary cultured adult-rat hepatocytes. FEBS Lett. 283:239–242. 1991. View Article : Google Scholar : PubMed/NCBI | |
Nartey NO, Banerjee D and Cherian MG: Immunohistochemical localization of metallothionein in cell-nucleus and cytoplasm of fetal human-liver and kidney and its changes during development. Pathology. 19:233–238. 1987. View Article : Google Scholar : PubMed/NCBI | |
Banerjee D, Onosaka S and Cherian MG: Immunohistochemical localization of metallothionein in cell-nucleus and cytoplasm of rat-liver and kidney. Toxicology. 24:95–105. 1982. View Article : Google Scholar : PubMed/NCBI | |
Tohno Y, Tohno S, Minami T, et al: Bindings of metallothionein to supranucleosomal fibers in mouse pancreatic nuclei after induction by 4-aminopyrazolo [3,4-d] pyrimidine. Cell Mol Biol. 42:1121–1127. 1996.PubMed/NCBI | |
Sunderman FW, GrbacIvankovic S, Plowman MR and Davis M: Zn2+-induction of metallothionein in myotomal cell nuclei during somitogenesis of Xenopus laevis. Mol Reprod Dev. 43:444–451. 1996. | |
Bernard X, Robinson P, Nomine Y, et al: Proteasomal degradation of p53 by human papillomavirus E6 oncoprotein relies on the structural integrity of p53 core domain. PLoS One. 6:1–10. 2011. View Article : Google Scholar : PubMed/NCBI |