1.
|
Wu XR: Urothelial tumorigenesis: a tale of
divergent pathways. Nat Rev Cancer. 5:713–725. 2005. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Baselli EC and Greenberg RE: Intravesical
therapy for superficial bladder cancer. Oncology. 14:719–729.
2000.PubMed/NCBI
|
3.
|
Malmström P: Improved patient outcomes
with BCG immuno-therapy vs chemotherapy - Swedish and worldwide
experience. Eur Urol. 37(Suppl 1): S16–S20. 2000.PubMed/NCBI
|
4.
|
Sekine H, Ohya K, Kojima SI, Igarashi K
and Fukui I: Equivalent efficacy of mitomycin C plus doxorubicin
instillation to bacillus Calmette-Guerin therapy for carcinoma in
situ of the bladder. Int J Urol. 8:483–486. 2001. View Article : Google Scholar
|
5.
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2001. View Article : Google Scholar
|
6.
|
Lee JI, Min HK, Lee JW, Jeong JD, Ha YJ,
Kwack SC and Park JS: Change in the quality of loin from pigs
supplemented with dietary methyl sulfonyl methane during cold
storage. Korean J Food Sci Ani Resour. 29:299–237. 2009.
|
7.
|
Joung YH, Lim EJ, Darvin P, Chung SC, Jang
JW, Park KD, Lee HK, Kim HS, Park TK and Yang YM: MSM enhances GH
signaling via the Jak2/STAT5b pathway in osteoblast-like cells and
osteoblast differentiation through the activation of STAT5b in
MSCs. PLoS One. 7:e474772012. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Lim EJ, Hong DY, Park JH, Joung YH, Pramod
D, Pak SH, Na YM, Hwang TS, Ye SK, Moon ES, Cho BW, Park KD, Lee HK
and Yang YM: Methylsulfonylmethane down-regulates the STAT3/VEGF
pathway in MDA-MB 231 cells and suppresses tumor growth of breast
cancer xenografts. PLoS One. 7:e333612011. View Article : Google Scholar
|
9.
|
Caron JM, Bannon M, Rosshirt L, Luis J,
Montaegudo L, Caron JM and Sternstein GM: Methyl sulfone induces
loss of metastatic properties and reemergence of normal phenotype
in a metastatic cloudman S-91 (M3) murine melanoma cell line. PLoS
One. 5:e117882010. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Caron JM, Bannon M, Rosshirt L and
O’Donovan L: Methyl sulfone manifests anticancer activity in a
metastatic murine breast cancer cell line and in human breast
cancer tissue -part I: murine 4T1 (66cl-4) cell line. Chemotherapy.
59:14–23. 2013.PubMed/NCBI
|
11.
|
Caron JM, Monteagudo L, Sanders M, Bannon
M and Deckers PJ: Methyl sulfone manifests anticancer activity in a
metastatic murine breast cancer cell line and in human breast
cancer tissue - part 2: human breast cancer tissue. Chemotherapy.
59:24–34. 2013.
|
12.
|
Ihle JN: STATs: signal tranducers and
activators of transcription. Cell. 84:331–334. 1996. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Seo IA, Lee HK, Shin YK, Lee SH, Seo SY,
Park JW and Park HT: Janus kinase 2 inhibitor AG490 inhibits the
STAT3 signaling pathway by suppressing protein translation of
gp130. Korean J Physiol Pharmacol. 13:131–138. 2009. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Samanta AK, Lin H, Sun T, Kantarjian H and
Arlinghaus RB: Janus kinase 2: a critical target in chronic
myelogenous leukemia. Cancer Res. 66:6468–6472. 2006. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Miyamoto N, Sugita K, Goi K, Inukai T,
Lijima K, Tezuka T, Kojika S, Nakamura M, Kagami K and Nakazawa S:
The JAK2 inhibitor AG490 predominantly abrogates the growth of
human B-precursor leukemic cells with 11q23 translocation or
Philadelphia chromosome. Leukemia. 15:1758–1768. 2001. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Meydan N, Grunberger T, Dadi H, Shahar M,
Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A,
Levitzki A and Roifman CM: Inhibition of acute lymphoblastic
leukaemia by a Jak-2 inhibitor. Nature. 379:645–648. 1996.
View Article : Google Scholar : PubMed/NCBI
|
17.
|
Ferrajoli A, Faderl S, Van Q, Koch P,
Harris D, Liu Z, Hazan-Halevy I, Wang Y, Kantarjian HM, Priebe W
and Estrov Z: WP1066 disrupts Janus kinase-2 and induces
caspase-dependent apoptosis in acute myelogenous leukemia cells.
Cancer Res. 67:11291–11299. 2007. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Verstovsek S, Manshouri T, Quintás-Cardama
A, Harris D, Cortes J, Giles FJ, Kantarjian H, Priebe W and Estrov
Z: WP1066, a novel JAK2 inhibitor, suppresses proliferation and
induces apoptosis in erythroid human cells carrying the JAK2 V617F
mutation. Clin Cancer Res. 14:788–796. 2008. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Turkson J and Jove R: STAT proteins: novel
molecular targets for cancer drug discovery. Oncogene.
19:6613–6626. 2000. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Darnell JE Jr: STATs and gene regulation.
Science. 277:1630–1635. 1997. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Bromberg JF: Activation of STAT proteins
and growth control. Bioessays. 23:161–169. 2001. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Fernandes A, Hamburger AW and Gerwin BI:
ErbB-2 kinase is required for constitutive stat 3 activation in
malignant human lung epithelial cells. Int J Cancer. 83:564–570.
1999. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Buettner R, Mora LB and Jove R: Activated
STAT signaling in human tumors provides novel molecular targets for
therapeutic intervention. Clin Cancer Res. 8:945–954.
2002.PubMed/NCBI
|
24.
|
Ren Z and Schaefer TS: ErbB-2 activates
Stat3 α in a Srcand JAK2-dependent manner. J Biol Chem.
277:38486–38493. 2002.
|
25.
|
Halachmi S, Aitken KJ, Szybowska M, Sabha
N, Dessouki S, Lorenzo A, Tse D and Bagli DJ: Role of signal
transducer and activator of transcription 3 (STAT3) in stretch
injury to bladder smooth muscle cells. Cell Tissue Res.
326:149–158. 2006. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Opdam FJ, Kamp M, de Bruijn R and Roos E:
Jak kinase activity is required for lymphoma invasion and
metastasis. Oncogene. 23:6647–6653. 2004. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Mijatovic T, Mathieu V, Gaussin JF, De
Neve N, Ribaucour F, Van Quaquebeke E, Dumont P, Darro F and Kiss
R: Cardenolide-induced lysosomal membrane permeabilization
demonstrates therapeutic benefits in experimental human non-small
cell lung cancers. Neoplasia. 8:402–412. 2006. View Article : Google Scholar
|
28.
|
Wu W, Shu X, Hovsepyan H, Mosteller RD and
Broek D: VEGF receptor expression and signaling in human bladder
tumors. Oncogene. 22:3361–3370. 2003. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Laramée M, Chabot C, Cloutier M, Stenne R,
Holgado-Madruga M, Wong AJ and Royal I: The scaffolding adapter
Gab1 mediates vascular endothelial growth factor signaling and is
required for endothelial cell migration and capillary formation. J
Biol Chem. 282:7758–7769. 2007.PubMed/NCBI
|
30.
|
Semenza GL, Jiang BH, Leung SW, Passantino
R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements
in the aldolase A, enolase 1 and lactate dehydrogenase A gene
promoters contain essential binding sites for hypoxia-inducible
factor 1. J Biol Chem. 271:32529–32537. 1996. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Jung JE, Lee HG, Cho IH, Chung DH, Yoon
SH, Yang YM, Lee JW, Choi S, Park JW and Ye SK: STAT3 is a
potential modulator of HIF-1-mediated VEGF expression in human
renal carcinoma cells. FASEB J. 19:1296–1298. 2005.PubMed/NCBI
|
32.
|
Joung YH, Lim EJ, Lee MY, Park JH, Ye SK,
Park EU, Kim SY, Zhang Z, Lee KJ, Park DK, Park T, Moon WK and Yang
YM: Hypoxia activates the cyclin D1 promoter via the Jak2/STAT5b
pathway in breast cancer cells. Exp Mol Med. 37:353–364. 2007.
View Article : Google Scholar
|
33.
|
Joung YH, Park JH, Park TK, Lee CS, Kim
OH, Ye SK, Yang UM, Lee KJ and Yang YM: Hypoxia activates signal
transducers and activators of transcription 5 (STAT5) and increases
its binding activity to the GAS element in mammary epithelial
cells. Exp Mol Med. 35:350–357. 2003. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Ellis L, Hammers H and Pili R: Targeting
tumor angiogenesis with histone deacetylase inhibitors. Cancer
Lett. 280:145–153. 2009. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Folkman J: Angiogenesis: an organizing
principle for drug discovery? Nat Rev Drug Discov. 6:273–286. 2007.
View Article : Google Scholar : PubMed/NCBI
|
36.
|
Folkman J: Endogenous angiogenesis
inhibitors. APMIS. 112:496–507. 2004. View Article : Google Scholar
|
37.
|
Hodge DR, Hurt EM and Farrar WL: The role
of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer.
41:2502–2512. 2005. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Haura EB, Turkson J and Jove R: Mechanisms
of disease: Insights into the emerging role of signal transducers
and activators of transcription in cancer. Nat Clin Pract Oncol.
2:315–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Chen SH, Murphy DA, Lassoued W, Thurston
G, Feldman MD and Lee WM: Activated STAT3 is a mediator and
biomarker of VEGF endothelial activation. Cancer Biol. 7:1994–2003.
2008. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Chen RJ, Ho YS, Guo HR and Wang YJ: Long
term nicotine exposure-induced chemoresistance is mediated by
activation of Stat3 and downregulation of ERK12 via nAChR and
beta-adrenoceptors in human bladder cancer cells. Toxicol Sci.
115:118–130. 2010. View Article : Google Scholar : PubMed/NCBI
|
41.
|
McColl BK, Stacker SA and Achen MG:
Molecular regulation of the VEGF family-inducers of angiogenesis
and lymphangio-genesis. APMIS. 112:463–480. 2004. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Niu G, Wright KL, Huang M, Song L, Haura
E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R,
Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R and Yu H:
Constitutive Stat3 activity up-regulates VEGF expression and tumor
angio-genesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Forsythe JA, Jiang BH, Iyer NV, Agani F,
Leung SW, Koos RD and Semenza GL: Activation of vascular
endothelial growth factor gene transcription by hypoxia-inducible
factor 1. Mol Cell Biol. 16:4604–4613. 1996.PubMed/NCBI
|
44.
|
Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li
D, Wu Y, Song Y, Luo J, Pang X, Yi Z and Liu M: Cucurbitacin E, a
tetracyclic triterpenes compound from Chinese medicine, inhibits
tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling
pathway. Carcinogenesis. 31:2097–2104. 2010. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Guo W and Giancotti FG: Integrin
signalling during tumour progression. Nat Rev Mol Cell Biol.
5:816–826. 2004. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Parimoo D and Raghavan D: Progress in the
management of metastatic bladder cancer. Cancer Control. 7:347–356.
2000.PubMed/NCBI
|
47.
|
Raghavan D, Shipley WU, Garnick MB,
Russell PJ and Richie JP: Biology and management of bladder cancer.
N Engl J Med. 322:1129–1138. 1990. View Article : Google Scholar : PubMed/NCBI
|