The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer (Review)
- Authors:
- Shu-Wei Wang
- Yue-Ming Sun
-
Affiliations: Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China - Published online on: January 15, 2014 https://doi.org/10.3892/ijo.2014.2259
- Pages: 1032-1040
This article is mentioned in:
Abstract
Niwa Y, Kanda H, Shikauchi Y, et al: Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 24:6406–6417. 2005.PubMed/NCBI | |
Lacronique V, Boureux A, Valle VD, et al: A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 278:1309–1312. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Li C, Halfter H and Liu J: Delineating an oncostatin M-activated STAT3 signaling pathway that coordinates the expression of genes involved in cell cycle regulation and extracellular matrix deposition of MCF-7 cells. Oncogene. 22:894–905. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alvarez JV, Greulich H, Sellers WR, Meyerson M and Frank DA: Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 66:3162–3168. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zamo A, Chiarle R, Piva R, et al: Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 21:1038–1047. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khong TL, Thairu N, Larsen H, Dawson PM, Kiriakidis S and Paleolog EM: Identification of the angiogenic gene signature induced by EGF and hypoxia in colorectal cancer. BMC Cancer. 13:5182013.PubMed/NCBI | |
Guthrie GJ, Roxburgh CS, Horgan PG and McMillan DC: Does interleukin-6 link explain the link between tumour necrosis, local and systemic inflammatory responses and outcome in patients with colorectal cancer? Cancer Treat Rev. 39:89–96. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar | |
Chung YC and Chang YF: Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol. 83:222–226. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gordziel C, Bratsch J, Moriggl R, Knosel T and Friedrich K: Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma. Br J Cancer. 109:138–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dambacher J, Beigel F, Seiderer J, et al: Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut. 56:1257–1265. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kishimoto T: IL-6: from its discovery to clinical applications. Int Immunol. 22:347–352. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rose-John S: Coordination of interleukin-6 biology by membrane bound and soluble receptors. Adv Exp Med Biol. 495:145–151. 2001. View Article : Google Scholar : PubMed/NCBI | |
Culig Z: Cytokine disbalance in common human cancers. Biochim Biophys Acta. 1813:308–314. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aoki Y, Feldman GM and Tosato G: Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood. 101:1535–1542. 2003. View Article : Google Scholar : PubMed/NCBI | |
Leeman RJ, Lui VW and Grandis JR: STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther. 6:231–241. 2006. View Article : Google Scholar : PubMed/NCBI | |
Haan C, Kreis S, Margue C and Behrmann I: Jaks and cytokine receptors - an intimate relationship. Biochem Pharmacol. 72:1538–1546. 2006.PubMed/NCBI | |
Rane SG and Reddy EP: JAKs, STATs and Src kinases in hematopoiesis. Oncogene. 21:3334–3358. 2002. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam A, Shanmugam MK, Perumal E, et al: Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta. 1835:46–60. 2013.PubMed/NCBI | |
Fan Y, Mao R and Yang J: NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 4:176–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Briggs J, Park S, et al: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 24:5552–5560. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ma J and Cao X: Regulation of Stat3 nuclear import by importin alpha5 and importin alpha7 via two different functional sequence elements. Cell Signal. 18:1117–1126. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shuai K: The STAT family of proteins in cytokine signaling. Prog Biophys Mol Biol. 71:405–422. 1999. View Article : Google Scholar : PubMed/NCBI | |
Candido J and Hagemann T: Cancer-related inflammation. J Clin Immunol. 33(Suppl 1): S79–S84. 2013. View Article : Google Scholar | |
Grivennikov S and Karin M: Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell. 13:7–9. 2008.PubMed/NCBI | |
Neurath MF and Finotto S: IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 22:83–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
Naugler WE and Karin M: The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 14:109–119. 2008. | |
Knupfer H and Preiss R: Serum interleukin-6 levels in colorectal cancer patients - a summary of published results. Int J Colorectal Dis. 25:135–140. 2010. View Article : Google Scholar : PubMed/NCBI | |
Atreya R and Neurath MF: Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 28:187–196. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jones SA, Richards PJ, Scheller J and Rose-John S: IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res. 25:241–253. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li Y, de Haar C, Chen M, et al: Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut. 59:227–235. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shimazaki J, Goto Y, Nishida K, Tabuchi T, Motohashi G and Ubukata H: In patients with colorectal cancer, preoperative serum interleukin-6 level and granulocyte/lymphocyte ratio are clinically relevant biomarkers of long-term cancer progression. Oncology. 84:356–361. 2013. View Article : Google Scholar | |
Jess T, Rungoe C and Peyrin-Biroulet L: Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 10:639–645. 2012. View Article : Google Scholar : PubMed/NCBI | |
Canavan C, Abrams KR and Mayberry J: Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther. 23:1097–1104. 2006. | |
Atreya R and Neurath MF: New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal Immunol. 1:175–182. 2008. View Article : Google Scholar : PubMed/NCBI | |
Atreya R, Mudter J, Finotto S, et al: Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 6:583–588. 2000. View Article : Google Scholar | |
Yamamoto K and Rose-John S: Therapeutic blockade of interleukin-6 in chronic inflammatory disease. Clin Pharmacol Ther. 91:574–576. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Zhang ZG, Tian XQ, et al: Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia. 10:287–297. 2008.PubMed/NCBI | |
Xiong H, Hong J, Du W, et al: Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem. 287:5819–5832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akira S, Nishio Y, Inoue M, et al: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 77:63–71. 1994. View Article : Google Scholar : PubMed/NCBI | |
Levy DE and Lee CK: What does Stat3 do? J Clin Invest. 109:1143–1148. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Noguchi K, Shi W, et al: Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA. 94:3801–3804. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bowman T, Garcia R, Turkson J and Jove R: STATs in oncogenesis. Oncogene. 19:2474–2488. 2000. View Article : Google Scholar | |
Bromberg JF, Wrzeszczynska MH, Devgan G, et al: Stat3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar | |
Zugowski C, Lieder F, Muller A, et al: STAT3 controls matrix metalloproteinase-1 expression in colon carcinoma cells by both direct and AP-1-mediated interaction with the MMP-1 promoter. Biol Chem. 392:449–459. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan Q, Pan H, Lou H, Xu Y and Tian L: Inhibition of the angiogenesis and growth of Aloin in human colorectal cancer in vitro and in vivo. Cancer Cell Int. 13:692013. View Article : Google Scholar : PubMed/NCBI | |
Qian WF, Guan WX, Gao Y, et al: Inhibition of STAT3 by RNA interference suppresses angiogenesis in colorectal carcinoma. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 44:1222–1230. 2011.PubMed/NCBI | |
Lee J, Kim JC, Lee SE, et al: Signal transducer and activator of transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma transition in Apcmin/+ mice via regulation of Snail-1 (SNAI) protein stability. J Biol Chem. 287:18182–18189. 2012.PubMed/NCBI | |
Grivennikov S, Karin E, Terzic J, et al: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Xu F, Lu T, Duan Z and Zhang Z: Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 38:904–910. 2012. View Article : Google Scholar : PubMed/NCBI | |
Puchalski T, Prabhakar U, Jiao Q, Berns B and Davis HM: Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin Cancer Res. 16:1652–1661. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Narazaki M and Kishimoto T: Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol. 52:199–219. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garnero P, Thompson E, Woodworth T and Smolen JS: Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multi-center double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum. 62:33–43. 2010. | |
Yang X, Zhang F, Wang Y, et al: Oroxylin A inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inflamm Bowel Dis. 19:1990–2000. 2013.PubMed/NCBI | |
Becker C, Fantini MC, Schramm C, et al: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 21:491–501. 2004. View Article : Google Scholar : PubMed/NCBI | |
Waetzig GH and Rose-John S: Hitting a complex target: an update on interleukin-6 trans-signalling. Expert Opin Ther Targets. 16:225–236. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Su WY, Liang QC, et al: Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells. Lab Invest. 89:717–725. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trengove MC and Ward AC: SOCS proteins in development and disease. Am J Clin Exp Immunol. 2:1–29. 2013. | |
Isomoto H: Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio-carcinoma due to SOCS3 epigenetic silencing. Digestion. 79(Suppl 1): 2–8. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gao SM, Chen CQ, Wang LY, et al: Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 41:261–270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu SH, Wang KB, Lan KH, et al: Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PloS One. 7:e437112012. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Du W, Zhang YJ, et al: Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog. 51:174–184. 2012. View Article : Google Scholar | |
Shuai K and Liu B: Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol. 5:593–605. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chung CD, Liao J, Liu B, et al: Specific inhibition of Stat3 signal transduction by PIAS3. Science. 278:1803–1805. 1997. View Article : Google Scholar : PubMed/NCBI | |
Saydmohammed M, Joseph D and Syed V: Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem. 110:447–456. 2010.PubMed/NCBI | |
Brantley EC, Nabors LB, Gillespie GY, et al: Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res. 14:4694–4704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Redell MS, Ruiz MJ, Alonzo TA, Gerbing RB and Tweardy DJ: Stat3 signaling in acute myeloid leukemia: ligand-dependent and-independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood. 117:5701–5709. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fletcher S, Drewry JA, Shahani VM, Page BD and Gunning PT: Molecular disruption of oncogenic signal transducer and activator of transcription 3 (STAT3) protein. Biochem Cell Biol. 87:825–833. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bromberg J and Wang TC: Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell. 15:79–80. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Q, Hong F, Shen A, et al: Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model. Int J Oncol. 40:1569–1574. 2012. | |
Cai Q, Lin J, Wei L, et al: Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway. Int J Mol Sci. 13:6117–6128. 2012. View Article : Google Scholar | |
Lin W, Zheng L, Zhuang Q, et al: Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 13:1442013. View Article : Google Scholar : PubMed/NCBI | |
Kim SW, Park KC, Jeon SM, et al: Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer. Cell Oncol. 36:169–178. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuno T, Hatano Y, Tomita H, et al: Organo-magnesium suppresses inflammation-associated colon carcinogenesis in male Crj: CD-1 mice. Carcinogenesis. 34:361–369. 2013. View Article : Google Scholar : PubMed/NCBI | |
Uddin S, Hussain AR, Khan OS and Al-Kuraya KS: Role of dysregulated expression of leptin and leptin receptors in colorectal carcinogenesis. Tumour Biol. Sep 7–2013.Epub ahead of print. | |
Ganji PN, Park W, Wen J, et al: Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1alpha and STAT-3. Angiogenesis. 16:903–917. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Li E, Liu Y, et al: Inhibition of Jak-STAT3 pathway enhances bufalin-induced apoptosis in colon cancer SW620 cells. World J Surg Oncol. 10:2282012. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Chen M, Ding X and Zou X: Proton pump inhibitor selectively suppresses proliferation and restores the chemosensitivity of gastric cancer cells by inhibiting STAT3 signaling pathway. Int Immunopharmacol. 17:585–592. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lamy S, Akla N, Ouanouki A, Lord-Dufour S and Beliveau R: Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway. Exp Cell Res. 318:1586–1596. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen JS, Chen YH, Huang PH, et al: Ginkgo biloba extract reduces high-glucose-induced endothelial adhesion by inhibiting the redox-dependent interleukin-6 pathways. Cardiovas Diabetol. 11:492012. View Article : Google Scholar : PubMed/NCBI | |
Hedvat M, Huszar D, Herrmann A, et al: The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell. 16:487–497. 2009. View Article : Google Scholar : PubMed/NCBI | |
Geletu M, Arulanandam R, Chevalier S, et al: Classical cadherins control survival through the gp130/Stat3 axis. Biochim Biophys Acta. 1833:1947–1959. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Wang SX, Wang YB, et al: ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling. FEBS Lett. 587:607–613. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ivanov VN, Wen G and Hei TK: Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis. 18:188–200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu DB, Hu GY, Long GX, Qiu H, Mei Q and Hu GQ: Celecoxib induces apoptosis and cell-cycle arrest in nasopharyngeal carcinoma cell lines via inhibition of STAT3 phosphorylation. Acta Pharmacol Sin. 33:682–690. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Tang D, Lotze MT and Zeh HJ III: AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy. 8:989–991. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu CT, Chen MF, Chen WC and Hsieh CC: The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol. 8:1592013. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Li G, Xu H and Lu C: Inhibition of the JAK-STAT3 signaling pathway by ganoderic acid A enhances chemosensitivity of HepG2 cells to cisplatin. Planta Med. 78:1740–1748. 2012. View Article : Google Scholar : PubMed/NCBI | |
Putoczki TL, Thiem S, Loving A, et al: Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 24:257–271. 2013. View Article : Google Scholar : PubMed/NCBI |