The roles of transforming growth factor-β, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours (Review)
- Authors:
- Eliene Bogaerts
- Femke Heindryckx
- Yves-Paul Vandewynckel
- Leo A. Van Grunsven
- Hans Van Vlierberghe
-
Affiliations: Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden, Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussels, Belgium - Published online on: February 3, 2014 https://doi.org/10.3892/ijo.2014.2286
- Pages: 1015-1022
-
Copyright: © Bogaerts et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global Cancer Statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar | |
Braillon A: Hepatocellular carcinoma. Lancet. 380:4692012. View Article : Google Scholar : PubMed/NCBI | |
Heindryckx F, Bogaerts E, Coulon SH, Devlies H, Geerts AM, Libbrecht L, Stassen JM, et al: Inhibition of the placental growth factor decreases burden of cholangiocarcinoma and hepatocellular carcinoma in a transgenic mouse model. Eur J Gastroenterol Hepatol. 24:1020–1032. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Lope CR, Tremosini S, Forner A, Reig M and Bruix J: Management of HCC. J Hepatol. 56:S75–S87. 2012. | |
Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, et al: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 15:220–231. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zen C, Zen Y, Mitry RR, Corbeil D, Karbanova J, O’Grady J, Karani J, et al: Mixed phenotype hepatocellular carcinoma after transarterial chemoembolization and liver transplantation. Liver Transplant. 17:943–954. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heindryckx F, Kuchnio A, Casteleyn C, Coulon S, Olievier K, Colle I, Geerts A, et al: Effect of prolyl hydroxylase domain-2 haplodeficiency on the hepatocarcinogenesis in mice. J Hepatol. 57:61–68. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tong CM, Ma S and Guan XY: Biology of hepatic cancer stem cells. J Gastroenterol Hepatol. 26:1229–1237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Forbes S, Vig P, Poulsom R, Thomas H and Alison M: Hepatic stem cells. J Pathol. 197:510–518. 2002. View Article : Google Scholar | |
Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C and Dabeva MD: Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology. 47:636–647. 2008. View Article : Google Scholar : PubMed/NCBI | |
Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, Jacquemin P, et al: Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 143:1564–1575. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Walton G, Aoki R, Brondell K, Schug J, Fox A, Smirnova O, et al: Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev. 25:1185–1192. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roskams T: Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 25:3818–3822. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Chan KW, Hu L, Lee TKW, Wo JYH, Ng IL, Zheng BJ, et al: Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 132:2542–2556. 2007. View Article : Google Scholar : PubMed/NCBI | |
Uenishi T, Kubo S, Yamamoto T, Shuto T, Ogawa M, Tanaka H, Tanaka S, et al: Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci. 94:851–857. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, et al: A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 12:410–416. 2006. View Article : Google Scholar : PubMed/NCBI | |
Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, Kumar A, et al: The canals of Hering and hepatic stem cells in humans. Hepatology. 30:1425–1433. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dolle L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA and Geerts A: The quest for liver progenitor cells: a practical point of view. J Hepatol. 52:117–129. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E and Theise ND: The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology. 47:1994–2002. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen XP, Zhang WG, Zhang F, Xiang SA, Dong HH and Zhang L: Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration. World J Gastroenterol. 15:552–560. 2009. View Article : Google Scholar : PubMed/NCBI | |
Van Hul N, Lanthier N, Suner RE, Quinones JA, van Rooijen N and Leclercq I: Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am J Pathol. 179:1839–1850. 2011.PubMed/NCBI | |
Pintilie DG, Shupe TD, Oh SH, Salganik SV, Darwiche H and Petersen BE: Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration. Lab Invest. 90:1199–1208. 2010. | |
Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, et al: Liver stem cells and hepatocellular carcinoma. Hepatology. 49:318–329. 2009. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A, Newell P, Chiang DY, Friedman SL and Llovet JM: Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 27:55–76. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chiba T, Kamiya A, Yokosuka O and Iwama A: Cancer stem cells in hepatocellular carcinoma: recent progress and perspective. Cancer Lett. 286:145–153. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dorrell C, Erker L, Schug J, Kopp JL, Canaday PS, Fox AJ, Smirnova O, et al: Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev. 25:1193–1203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dolle L, Best J, Empsen C, Mei J, Van Rossen E, Roelandt P, Snykers S, et al: Successful isolation of liver progenitor cells by aldehyde dehydrogenase activity in naive mice. Hepatology. 55:540–552. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huch M, Dorrell C, Boj SF, van Es JH, Li VSW, van de Wetering M, Sato T, et al: In vitro expansion of single Lgr5(+) liver stem cells induced by Wnt-driven regeneration. Nature. 494:247–250. 2013. | |
Coulouarn C, Cavard C, Rubbia-Brandt L, Audebourg A, Dumont F, Jacques S, Just PA, et al: Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGF signaling pathways. Carcinogenesis. 33:1791–1796. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shimada M, Sugimoto K, Iwahashi S, Utsunomiya T, Morine Y, Imura S and Ikemoto T: CD133 expression is a potential prognostic indicator in intrahepatic cholangiocarcinoma. J Gastroenterol. 45:896–902. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yin SY, Li JJ, Hu C, Chen XH, Yao M, Yan MX, Jiang GP, et al: CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 120:1444–1450. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Zhang BH, Qiu SJ, Ren ZG, Zhou J, Chen XH, Zhou Y, et al: Combined hepatocellular carcinoma and cholangiocarcinoma: clinical features, treatment modalities, and prognosis. Ann Surg Oncol. 19:2869–2876. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gottschling S, Schnabel PA, Herth FJF and Herpel E: Are we missing the target? Cancer stem cells and drug resistance in non-small cell lung cancer. Cancer Genomics Proteomics. 9:275–286. 2012.PubMed/NCBI | |
Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, et al: Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 18:572–579. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Vander Borght S, Gaudio E and Roskams T: Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut. 59:247–257. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wendt MK, Tian MZ and Schiemann WP: Deconstructing the mechanisms and consequences of TGF-beta-induced EMT during cancer progression. Cell Tissue Res. 347:85–101. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seok JY, Na DC, Woo HG, Roncalli M, Kwon SM, Yoo JE, Ahn EY, et al: A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition. Hepatology. 55:1776–1786. 2012. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Polakis P: Wnt signaling and cancer. Genes Dev. 14:1837–1851. 2000. | |
Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, et al: Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 68:4287–4295. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Budhu A, Forgues M and Wang XW: Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res. 67:10831–10839. 2007. View Article : Google Scholar : PubMed/NCBI | |
Apte U, Thompson MD, Cui SS, Liu B, Cieply B and Monga SPS: Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 47:288–295. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, et al: EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abdullah LN and Chow EK: Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2:32013. View Article : Google Scholar : PubMed/NCBI | |
Noda T, Nagano H, Takemasa I, Yoshioka S, Murakami M, Wada H, Kobayashi S, et al: Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma. Br J Cancer. 100:1647–1658. 2009. View Article : Google Scholar | |
DeMorrow S, Francis H, Gaudio E, Venter J, Franchitto A, Kopriva S, Onori P, et al: The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol. 295:G1150–G1158. 2008. View Article : Google Scholar : PubMed/NCBI | |
Toyama T, Lee HC, Koga H, Wands JR and Kim M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res. 8:254–265. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, et al: Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 8:902009. View Article : Google Scholar : PubMed/NCBI | |
Mishra L, Jogunoori W, Johnson L, Tang Y, Katuri V, Shetty K and Mishra B: TGF-beta-signaling is required for ductal progenitor cell survival and epithelial cell differentiation in normal liver. Gastroenterology. 128:A353. 2005. | |
Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, et al: Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/ BMP signaling in vivo. Cytokine Growth Factor Rev. 22:287–300. 2011.PubMed/NCBI | |
van Grunsven LA, Verstappen G, Huylebroeck D and Verschueren K: Smads and chromatin modulation. Cytokine Growth Factor Rev. 16:495–512. 2005.PubMed/NCBI | |
Mu Y, Gudey SK and Landström M: Non-Smad signaling pathways. Cell Tissue Res. 347:11–20. 2011. View Article : Google Scholar | |
Drabsch Y and ten Dijke P: TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31:553–568. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fausto N: Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 39:1477–1487. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ikegami T: Transforming growth factor-beta signaling and liver cancer stem cell. Hepatol Res. 39:847–849. 2009. View Article : Google Scholar : PubMed/NCBI | |
Caja L, Bertran E, Campbell J, Fausto N and Fabregat I: The transforming growth factor-beta (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol. 226:1214–1223. 2011. | |
Thiery JP and Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zulehner G, Mikula M, Schneller D, van Zijl F, Huber H, Sieghart W, Grasl-Kraupp B, et al: Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. Am J Pathol. 176:472–481. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thenappan A, Li Y, Kitisin K, Rashid A, Shetty K, Johnson L and Mishra L: Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver. Hepatology. 51:1373–1382. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 16:633–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zong YW, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F and Stanger BZ: Notch signaling controls liver development by regulating biliary differentiation. Development. 136:1727–1739. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Velazquez OC and Liu ZJ: Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol. 80:690–701. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qi RZ, An HZ, Yu YZ, Zhang MH, Liu SX, Xu HM, Guo ZH, et al: Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63:8323–8329. 2003.PubMed/NCBI | |
Lim SO, Park YM, Kim HS, Quan X, Yoo JE, Park YN, Choi GH, et al: Notch1 differentially regulates oncogenesis by wildtype p53 overexpression and p53 mutation in grade III hepatocellular carcinoma. Hepatology. 53:1352–1362. 2011. View Article : Google Scholar : PubMed/NCBI | |
Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin CW, Zmoos AF, et al: Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med. 208:1963–1976. 2011. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong YW, Toffanin S, Rodriguez-Carunchio L, et al: Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology. 143:1660–1669. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zender S, Nickeleit I, Wuestefeld T, Sorensen I, Dauch D, Bozko P, El-Khatib M, et al: A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell. 23:784–795. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harris A: Resistance to anti-angiogenic therapy induced by hypoxia and notch signalling. EJC (Suppl). 8:183–184. 2010. View Article : Google Scholar | |
Li JL, Sainson RCA, Oon CE, Turley H, Leek R, Sheldon H, Bridges E, et al: DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 71:6073–6083. 2011. View Article : Google Scholar : PubMed/NCBI | |
Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, et al: Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 279:38458–38465. 2004. View Article : Google Scholar : PubMed/NCBI | |
Van Steenkiste C, Ribera J, Geerts A, Pauta M, Tugues S, Casteleyn C, Libbrecht L, et al: Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology. 53:1629–1640. 2011.PubMed/NCBI | |
Heindryckx F, Coulon S, Terrie E, Casteleyn C, Stassen JM, Geerts A, Libbrecht L, Allemeersch J, Carmeliet P, Colle I and Van Vlierberghe H: The placental growth factor as a target against hepatocellular carcinoma in an orthotopic mouse model. J Hepatol. 58:319–328. 2012. View Article : Google Scholar | |
Alison MR, Lin WR, Lim SML and Nicholson LJ: Cancer stem cells: in the line of fire. Cancer Treat Rev. 38:589–598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mathieu J, Zhang Z, Zhou WY, Wang AJ, Heddleston JM, Pinna CMA, Hubaud A, et al: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 71:4640–4652. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liang YJ, Zheng TS, Song RP, Wang JB, Yin DL, Wang LL, Liu HT, et al: Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinomaa. Hepatology. 57:1847–1857. 2013.PubMed/NCBI | |
Lehwald N, Tao GZ, Jang KY, Sorkin M, Knoefel WT and Sylvester KG: Wnt-β-catenin signaling protects against hepatic ischemia and reperfusion injury in mice. Gastroenterology. 141:707–718. 2011. | |
Zhang Q, Bai XL, Chen W, Ma T, Hu QD, Liang C, Xie SZ, et al: Wnt/beta-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1 alpha signaling. Carcinogenesis. 34:962–973. 2013. View Article : Google Scholar | |
Chen YX, Wong PP, Sjeklocha L, Steer CJ and Sahin MB: Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology. 55:563–574. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka J, Yashiro M, Doi Y, Fuyuhiro Y, Kato Y, Shinto O, Noda S, et al: Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFbeta signaling. PLoS One. 8:e623102013. View Article : Google Scholar : PubMed/NCBI | |
Copple BL: Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver Int. 30:669–682. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsuno Y, Coelho AL, Jarai G, Westvvick J and Hogaboam CM: Notch signaling mediates TGF-beta 1-induced epithelial-mesenchymal transition through the induction of Snail. Int J Biochem Cell Biol. 44:776–789. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lim SO, Kim HS, Quan X, Ahn SM, Kim H, Hsieh D, Seong JK, et al: Notch1 binds and induces degradation of Snail in hepatocellular carcinoma. BMC Biol. 9:832011. View Article : Google Scholar : PubMed/NCBI | |
Goodman ZD, Ishak KG, Langloss JM, Sesterhenn IA and Rabin L: Combined hepatocellular-cholangiocarcinoma - a histologic and immunohistochemical study. Cancer. 55:124–135. 1985. View Article : Google Scholar : PubMed/NCBI | |
Lau CK, Yang ZF, Ho DW, Ng MN, Yeoh GCT, Poon RTP and Fan ST: An Akt/hypoxia-inducible factor-1alpha/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin Cancer Res. 15:3462–3471. 2009. View Article : Google Scholar | |
Lee JI, Lee JW, Kim JM, Kim JK, Chung HJ and Kim YS: Prognosis of hepatocellular carcinoma expressing cytokeratin 19: comparison with other liver cancers. World J Gastroenterol. 18:4751–4757. 2012. View Article : Google Scholar : PubMed/NCBI | |
Komuta M, Govaere O, Vandecaveye V, Akiba J, Van Steenbergen W, Verslype C, Laleman W, et al: Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology. 55:1876–1888. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tickoo SK, Zee SY, Obiekwe S, Xiao H, Koea J, Robiou C, Blumgart LH, et al: Combined hepatocellular-cholangiocarcinoma - a histopathologic, immunohistochemical, and in situ hybridization study. Am J Surg Pathol. 26:989–997. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, et al: Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 52:528–539. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chu PGG, Ishizawa S, Wu E and Weiss LM: Hepatocyte antigen as a marker of hepatocellular carcinoma - an immunohistochemical comparison to carcinoembryonic antigen, CD10, and alpha-fetoprotein. Am J Surg Pathol. 26:978–988. 2002. View Article : Google Scholar : PubMed/NCBI | |
Omori N, Evarts RP, Omori M, Hu ZY, Marsden ER and Thorgeirsson SS: Expression of leukemia inhibitory factor and its receptor during liver regeneration in the adult rat. Lab Invest. 75:15–24. 1996.PubMed/NCBI | |
Carpentier R, Suner RE, van Hul N, Kopp JL, Beaudry JB, Cordi S, Antoniou A, et al: Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology. 141:1432–1438. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Lee TK, Zheng BJ, Chan K and Guan XY: CD133(+) HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 27:1749–1758. 2008. | |
Fan LN, He FR, Liu HX, Zhu J, Liu YX, Yin ZY, Wang L, et al: CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma. BMC Cancer. 11:3202011. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Zou QF, Ge RL, Shen F and Wang YZ: The critical role of CD133(+)CD44(+/high) tumor cells in hematogenous metastasis of liver cancers. Cell Res. 22:259–272. 2012. | |
Knight B, Tirnitz-Parker JEE and Olynyk JK: C-kit inhibition by imatinib mesylate attenuates progenitor cell expansion and inhibits liver tumor formation in mice. Gastroenterology. 135:969–979. 2008. View Article : Google Scholar : PubMed/NCBI |