1.
|
Wells A: Tumor invasion: role of growth
factor-induced cell motility. Adv Cancer Res. 78:31–101. 2000.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Price JT, Wilson HM and Haites NE:
Epidermal growth factor (EGF) increases the in vitro invasion,
motility and adhesion interactions of the primary renal carcinoma
cell line, A704. Eur J Cancer. 32A:1977–1982. 1996. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Sieg DJ, Hauck CR, Ilic D, Klingbeil CK,
Schaefer E, Damsky CH, et al: FAK integrates growth-factor and
integrin signals to promote cell migration. Nat Cell Biol.
2:249–256. 2000. View
Article : Google Scholar : PubMed/NCBI
|
4.
|
Gullick WJ: Prevalence of aberrant
expression of the epidermal growth factor receptor in human
cancers. Br Med Bull. 47:87–98. 1991.PubMed/NCBI
|
5.
|
Salomon DS, Brandt R, Ciardiello F and
Normanno N: Epidermal growth factor-related peptides and their
receptors in human malignancies. Crit Rev Oncol Hematol.
19:183–232. 1995. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Rhim AD, Mirek ET, Aiello NM, Maitra A,
Bailey JM, McAllister F, et al: EMT and dissemination precede
pancreatic tumor formation. Cell. 148:349–361. 2012. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Meiers S, Kemeny M, Weyand U, Gastpar R,
von Angerer E and Marko D: The anthocyanidins cyanidin and
delphinidin are potent inhibitors of the epidermal growth-factor
receptor. J Agric Food Chem. 49:958–962. 2001. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Shin DY, Lee WS, Lu JN, Kang MH, Ryu CH,
Kim GY, et al: Induction of apoptosis in human colon cancer HCT-116
cells by anthocyanins through suppression of Akt and activation of
p38-MAPK. Int J Oncol. 35:1499–1504. 2009.PubMed/NCBI
|
9.
|
Yun JW, Lee WS, Kim MJ, Lu JN, Kang MH,
Kim HG, et al: Characterization of a profile of the anthocyanins
isolated from Vitis coignetiae Pulliat and their
anti-invasive activity on HT-29 human colon cancer cells. Food Chem
Toxicol. 48:903–909. 2010.PubMed/NCBI
|
10.
|
Vihinen P and Kahari VM: Matrix
metalloproteinases in cancer: prognostic markers and therapeutic
targets. Int J Cancer. 99:157–166. 2002. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Deryugina EI and Quigley JP: Matrix
metalloproteinases and tumor metastasis. Cancer Metastasis Rev.
25:9–34. 2006. View Article : Google Scholar
|
12.
|
Goldkorn T, Balaban N, Matsukuma K, Chea
V, Gould R, Last J, et al: EGF-receptor phosphorylation and
signaling are targeted by H2O2 redox stress.
Am J Respir Cell Mol Biol. 19:786–798. 1998. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Carpenter G and Cohen S: Epidermal growth
factor. J Biol Chem. 265:7709–7712. 1990.
|
14.
|
Margolis B, Bellot F, Honegger AM, Ullrich
A, Schlessinger J and Zilberstein A: Tyrosine kinase activity is
essential for the association of phospholipase C-gamma with the
epidermal growth factor receptor. Mol Cell Biol. 10:435–441.
1990.PubMed/NCBI
|
15.
|
Li Y, Welm B, Podsypanina K, Huang S,
Chamorro M, Zhang X, et al: Evidence that transgenes encoding
components of the Wnt signaling pathway preferentially induce
mammary cancers from progenitor cells. Proc Natl Acad Sci USA.
100:15853–15858. 2003. View Article : Google Scholar
|
16.
|
Chu EY, Hens J, Andl T, Kairo A, Yamaguchi
TP, Brisken C, et al: Canonical WNT signaling promotes mammary
placode development and is essential for initiation of mammary
gland morphogenesis. Development. 131:4819–4829. 2004. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Jope RS, Yuskaitis CJ and Beurel E:
Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and
therapeutics. Neurochem Res. 32:577–595. 2007. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Teller N, Thiele W, Marczylo TH, Gescher
AJ, Boettler U, Sleeman J, et al: Suppression of the kinase
activity of receptor tyrosine kinases by anthocyanin-rich mixtures
extracted from bilberries and grapes. J Agric Food Chem.
57:3094–3101. 2009. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Huang HP, Shih YW, Chang YC, Hung CN and
Wang CJ: Chemoinhibitory effect of mulberry anthocyanins on
melanoma metastasis involved in the Ras/PI3K pathway. J Agric Food
Chem. 56:9286–9293. 2008. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Nurwidya F, Takahashi F, Murakami A and
Takahashi K: Epithelial mesenchymal transition in drug resistance
and metastasis of lung cancer. Cancer Res Treat. 44:151–156. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Barrallo-Gimeno A and Nieto MA: The Snail
genes as inducers of cell movement and survival: implications in
development and cancer. Development. 132:3151–3161. 2005.
View Article : Google Scholar
|
22.
|
Kim D, Kim S, Koh H, Yoon SO, Chung AS,
Cho KS, et al: Akt/PKB promotes cancer cell invasion via increased
motility and metalloproteinase production. FASEB J. 15:1953–1962.
2001. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Peinado H, Quintanilla M and Cano A:
Transforming growth factor beta-1 induces snail transcription
factor in epithelial cell lines: mechanisms for epithelial
mesenchymal transitions. J Biol Chem. 278:21113–21123. 2003.
View Article : Google Scholar : PubMed/NCBI
|
24.
|
Lee J, Moon HJ, Lee JM and Joo CK: Smad3
regulates Rho signaling via NET1 in the transforming growth
factor-beta-induced epithelial-mesenchymal transition of human
retinal pigment epithelial cells. J Biol Chem. 285:26618–26627.
2010. View Article : Google Scholar
|
25.
|
Willis BC and Borok Z: TGF-beta-induced
EMT: mechanisms and implications for fibrotic lung disease. Am J
Physiol Lung Cell Mol Physiol. 293:L525–L534. 2007. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Qiu Q, Yang M, Tsang BK and Gruslin A:
EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves
activation of both PI3K and MAPK signalling pathways. Reproduction.
128:355–363. 2004. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Bouchard F, Belanger SD, Biron-Pain K and
St-Pierre Y: EGR-1 activation by EGF inhibits MMP-9 expression and
lymphoma growth. Blood. 116:759–766. 2010. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Stuelten CH, DaCosta Byfield S, Arany PR,
Karpova TS, Stetler-Stevenson WG and Roberts AB: Breast cancer
cells induce stromal fibroblasts to express MMP-9 via secretion of
TNF-alpha and TGF-beta. J Cell Sci. 118:2143–2153. 2005. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Wang H, Wang HS, Zhou BH, Li CL, Zhang F,
Wang XF, et al: Epithelial-mesenchymal transition (EMT) induced by
TNF-alpha requires Akt/GSK-3beta-mediated stabilization of snail in
colorectal cancer. PLoS One. 8:e566642013. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Yan D, Avtanski D, Saxena NK and Sharma D:
Leptin-induced epithelial-mesenchymal transition in breast cancer
cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1
protein-dependent pathways. J Biol Chem. 287:8598–8612. 2012.
View Article : Google Scholar
|
31.
|
Saito Y, Vandenheede JR and Cohen P: The
mechanism by which epidermal growth factor inhibits glycogen
synthase kinase 3 in A431 cells. Biochem J. 303:27–31.
1994.PubMed/NCBI
|
32.
|
Chen G, Bower KA, Xu M, Ding M, Shi X, Ke
ZJ, et al: Cyanidin-3-glucoside reverses ethanol-induced inhibition
of neurite outgrowth: role of glycogen synthase kinase 3 beta.
Neurotox Res. 15:321–331. 2009. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Hudson TS, Hartle DK, Hursting SD, Nunez
NP, Wang TT, Young HA, et al: Inhibition of prostate cancer growth
by muscadine grape skin extract and resveratrol through distinct
mechanisms. Cancer Res. 67:8396–8405. 2007. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Galbaugh T, Cerrito MG, Jose CC and Cutler
ML: EGF-induced activation of Akt results in mTOR-dependent p70S6
kinase phosphorylation and inhibition of HC11 cell lactogenic
differentiation. BMC Cell Biol. 7:342006. View Article : Google Scholar : PubMed/NCBI
|