Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance
- Authors:
- Rishil J. Kathawala
- Jun-Jiang Chen
- Yun-Kai Zhang
- Yi-Jun Wang
- Atish Patel
- De-Shen Wang
- Tanaji T. Talele
- Charles R. Ashby
- Zhe-Sheng Chen
-
Affiliations: Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA - Published online on: March 13, 2014 https://doi.org/10.3892/ijo.2014.2341
- Pages: 1634-1642
This article is mentioned in:
Abstract
Wu CP, Calcagno AM and Ambudkar SV: Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol. 1:93–105. 2008. View Article : Google Scholar | |
Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI | |
Quintieri L, Fantin M and Vizler C: Identification of molecular determinants of tumor sensitivity and resistance to anticancer drugs. Adv Exp Med Biol. 593:95–104. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu YY, Han TY, Giuliano AE and Cabot MC: Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J. 15:719–730. 2001. View Article : Google Scholar | |
Lowe SW, Ruley HE, Jacks T and Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 74:957–967. 1993. View Article : Google Scholar : PubMed/NCBI | |
Synold TW, Dussault I and Forman BM: The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med. 7:584–590. 2001. View Article : Google Scholar | |
Deeley RG, Westlake C and Cole SP: Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev. 86:849–899. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bradbury PA and Middleton MR: DNA repair pathways in drug resistance in melanoma. Anticancer Drugs. 15:421–426. 2004. View Article : Google Scholar | |
Ambudkar SV, Kim IW, Xia D and Sauna ZE: The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett. 580:1049–1055. 2006. View Article : Google Scholar | |
Liu FS: Mechanisms of chemotherapeutic drug resistance in cancer therapy - a quick review. Taiwan J Obstet Gynecol. 48:239–244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gillet JP, Efferth T and Remacle J: Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta. 1775:237–262. 2007.PubMed/NCBI | |
Linton KJ and Higgins CF: Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch. 453:555–567. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sodani K, Patel A, Kathawala RJ and Chen ZS: Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer. 31:58–72. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tiwari AK, Sodani K, Dai CL, Ashby CR Jr and Chen ZS: Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 12:570–594. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mao Q and Unadkat JD: Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 7:E118–E133. 2005. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Suzuki H, Sugimoto Y and Sugiyama Y: ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem. 278:22644–22649. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rocchi E, Khodjakov A, Volk EL, et al: The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun. 271:42–46. 2000. View Article : Google Scholar : PubMed/NCBI | |
Maliepaard M, Scheffer GL, Faneyte IF, et al: Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61:3458–3464. 2001.PubMed/NCBI | |
Cooray HC, Blackmore CG, Maskell L and Barrand MA: Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport. 13:2059–2063. 2002. View Article : Google Scholar : PubMed/NCBI | |
Doyle LA, Yang W, Abruzzo LV, et al: A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 95:15665–15670. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schinkel AH and Jonker JW: Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 55:3–29. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dean M and Allikmets R: Complete characterization of the human ABC gene family. J Bioenerg Biomembr. 33:475–479. 2001. View Article : Google Scholar : PubMed/NCBI | |
Miyake K, Mickley L, Litman T, et al: Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59:8–13. 1999. | |
Chen ZS, Robey RW, Belinsky MG, et al: Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 63:4048–4054. 2003.PubMed/NCBI | |
Honjo Y, Hrycyna CA, Yan QW, et al: Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 61:6635–6639. 2001.PubMed/NCBI | |
Dai CL, Liang YJ, Wang YS, et al: Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett. 279:74–83. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pozza A, Perez-Victoria JM, Sardo A, Ahmed-Belkacem A and Di Pietro A: Purification of breast cancer resistance protein ABCG2 and role of arginine-482. Cell Mol Life Sci. 63:1912–1922. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ejendal KF and Hrycyna CA: Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci. 3:503–511. 2002. View Article : Google Scholar : PubMed/NCBI | |
Padmanabhan R, Chen KG, Gillet JP, et al: Regulation and expression of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells. Stem Cells. 30:2175–2187. 2012. View Article : Google Scholar : PubMed/NCBI | |
Evseenko DA, Paxton JW and Keelan JA: Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab Dispos. 35:595–601. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen ZS, Aoki S, Komatsu M, et al: Reversal of drug resistance mediated by multidrug resistance protein (MRP) 1 by dual effects of agosterol A on MRP1 function. Int J Cancer. 93:107–113. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dai CL, Tiwari AK, Wu CP, et al: Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 68:7905–7914. 2008. View Article : Google Scholar | |
Kathawala RJ, Wang YJ, Ashby CR Jr and Chen ZS: Recent advances regarding the role of ABC subfamily C member 10 (ABCC10) in the efflux of antitumor drugs. Chin J Cancer. Oct 9–2013.(Epub ahead of print). | |
Deng W, Dai CL, Chen JJ, et al: Tandutinib (MLN518) reverses multidrug resistance by inhibiting the efflux activity of the multidrug resistance protein 7 (ABCC10). Oncol Rep. 29:2479–2485. 2013.PubMed/NCBI | |
Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C and Gottesman MM: Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5:219–234. 2006. View Article : Google Scholar | |
Yang D, Kathawala RJ, Chufan EE, et al: Tivozanib reverses multidrug resistance mediated by ABCB1 (P-glycoprotein) and ABCG2 (BCRP). Future Oncol. Dec 3–2013.(Epub ahead of print). | |
Shen T, Kuang YH, Ashby CR, et al: Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One. 4:e75202009. View Article : Google Scholar : PubMed/NCBI | |
Tiwari AK, Sodani K, Wang SR, et al: Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol. 78:153–161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Peng XX, Kim IW, et al: Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res. 67:11012–11020. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vermersch P, Benrabah R, Schmidt N, et al: Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol. 12:362012. View Article : Google Scholar : PubMed/NCBI | |
Rommer PS and Stuve O: Management of secondary progressive multiple sclerosis: prophylactic treatment-past, present, and future aspects. Curr Treat Options Neurol. 15:241–258. 2013. View Article : Google Scholar : PubMed/NCBI | |
Humbert M, de Blay F, Garcia G, et al: Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy. 64:1194–1201. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee-Fowler TM, Guntur V, Dodam J, Cohn LA, DeClue AE and Reinero CR: The tyrosine kinase inhibitor masitinib blunts airway inflammation and improves associated lung mechanics in a feline model of chronic allergic asthma. Int Arch Allergy Immunol. 158:369–374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tebib J, Mariette X, Bourgeois P, et al: Masitinib in the treatment of active rheumatoid arthritis: results of a multicentre, open-label, dose-ranging, phase 2a study. Arthritis Res Ther. 11:R952009. View Article : Google Scholar : PubMed/NCBI | |
Walker UA: More about masitinib. Arthritis Res Ther. 11:1202009. View Article : Google Scholar | |
Georgin-Lavialle S, Lhermitte L, Suarez F, et al: Mast cell leukemia: identification of a new c-Kit mutation, dup(501–502) and response to masitinib, a c-Kit tyrosine kinase inhibitor. Eur J Haematol. 89:47–52. 2012.PubMed/NCBI | |
Paul C, Sans B, Suarez F, et al: Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study. Am J Hematol. 85:921–925. 2010. View Article : Google Scholar : PubMed/NCBI | |
Le Cesne A, Blay JY, Bui BN, et al: Phase II study of oral masitinib mesilate in imatinib-naive patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer. 46:1344–1351. 2010.PubMed/NCBI | |
Mitry E, Hammel P, Deplanque G, et al: Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol. 66:395–403. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gottesman MM, Fojo T and Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2:48–58. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG and Chen ZS: ABCC10, ABCC11, and ABCC12. Pflugers Arch. 453:675–684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Robey RW, Honjo Y, Morisaki K, et al: Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer. 89:1971–1978. 2003. View Article : Google Scholar : PubMed/NCBI | |
Carmichael J, DeGraff WG, Gazdar AF, Minna JD and Mitchell JB: Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47:936–942. 1987.PubMed/NCBI | |
Hazai E and Bikadi Z: Homology modeling of breast cancer resistance protein (ABCG2). J Struct Biol. 162:63–74. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alqawi O, Bates S and Georges E: Arginine482 to threonine mutation in the breast cancer resistance protein ABCG2 inhibits rhodamine 123 transport while increasing binding. Biochem J. 382:711–716. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sun YL, Kathawala RJ, Singh S, et al: Zafirlukast antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Anticancer Drugs. 23:865–873. 2012. View Article : Google Scholar : PubMed/NCBI | |
Litman T, Brangi M, Hudson E, et al: The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci. 113:2011–2021. 2000.PubMed/NCBI | |
Schellens JH, Maliepaard M, Scheper RJ, et al: Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann NY Acad Sci. 922:188–194. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jonker JW, Smit JW, Brinkhuis RF, et al: Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst. 92:1651–1656. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Oka M and Soda H: Gefitinib (‘Iressa’, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res. 65:1541–1546. 2005. | |
Shukla S, Robey RW, Bates SE and Ambudkar SV: Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos. 37:359–365. 2009. View Article : Google Scholar | |
Mi YJ, Liang YJ, Huang HB, et al: Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 70:7981–7991. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nicolle E, Boumendjel A, Macalou S, et al: QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv Drug Deliv Rev. 61:34–46. 2009. View Article : Google Scholar : PubMed/NCBI | |
An Y and Ongkeko WM: ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 5:1529–1542. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Huang WC, Wei YL, et al: Elevated BCRP/ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells. PLoS One. 6:e214282011. View Article : Google Scholar : PubMed/NCBI | |
Natarajan K, Xie Y, Baer MR and Ross DD: Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 83:1084–1103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kerr ID, Haider AJ and Gelissen IC: The ABCG family of membrane-associated transporters: you don’t have to be big to be mighty. Br J Pharmacol. 164:1767–1779. 2011. | |
Robey RW, Medina-Perez WY, Nishiyama K, et al: Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res. 7:145–152. 2001.PubMed/NCBI | |
Robey RW, Ierano C, Zhan Z and Bates SE: The challenge of exploiting ABCG2 in the clinic. Curr Pharm Biotechnol. 12:595–608. 2011. View Article : Google Scholar : PubMed/NCBI | |
Woodward OM, Kottgen A and Kottgen M: ABCG transporters and disease. FEBS J. 278:3215–3225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Peng H and Zhang JT: Human multidrug transporter ABCG2, a target for sensitizing drug resistance in cancer chemotherapy. Curr Med Chem. 14:689–701. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hang D, Dong HC, Ning T, Dong B, Hou DL and Xu WG: Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Dis Esophagus. 25:638–644. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li ZN, Du YJ, Li XQ, Bao QL and Chen P: Expression of MRP1, BCRP, LRP, and ERCC1 in advanced non-small-cell lung cancer: correlation with response to chemotherapy and survival. Clin Lung Cancer. 10:414–421. 2009. View Article : Google Scholar | |
Tsunoda S, Okumura T, Ito T, et al: ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology. 71:251–258. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bunting KD: ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 20:11–20. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Turnquist H, Jackson J, et al: The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res. 8:22–28. 2002.PubMed/NCBI | |
Kusuhara H and Sugiyama Y: ATP-binding cassette, subfamily G (ABCG family). Pflugers Arch. 453:735–744. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ding XW, Wu JH and Jiang CP: ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 86:631–637. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sung JM, Cho HJ, Yi H, et al: Characterization of a stem cell population in lung cancer A549 cells. Biochem Biophys Res Commun. 371:163–167. 2008. View Article : Google Scholar : PubMed/NCBI |