ALK inhibitors and advanced non-small cell lung cancer (Review)
- Authors:
- Antonio Rossi
- Paolo Maione
- Paola Claudia Sacco
- Assunta Sgambato
- Francesca Casaluce
- Marianna Luciana Ferrara
- Giovanni Palazzolo
- Fortunato Ciardiello
- Cesare Gridelli
-
Affiliations: Division of Medical Oncology, ‘S.G. Moscati’ Hospital, Avellino, Italy, Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy, Division of Medical Oncology, ‘ULSS 15 Cittadella’, Padova, Italy - Published online on: May 29, 2014 https://doi.org/10.3892/ijo.2014.2475
- Pages: 499-508
This article is mentioned in:
Abstract
Rossi A, Torri V, Garassino MC, Porcu L and Galetta D: The impact of personalized medicine on survival: comparisons of results in metastatic breast, colorectal and non-small-cell lung cancers. Cancer Treat Rev. 40:485–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scagliotti GV, Parikh P, von Pawel J, et al: Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 26:3543–3551. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sandler A, Gray R, Perry MC, et al: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rossi A, Pasquale R, Esposito C and Normanno N: Should epidermal growth factor receptor tyrosine kinae inhibitors be considered ideal drugs for the treatment of selected advanced non-small cell lung cancer patients? Cancer Treat Rev. 39:489–497. 2013. View Article : Google Scholar | |
Soda M, Choi YL, Enomoto M, et al: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 448:561–566. 2007. View Article : Google Scholar : PubMed/NCBI | |
Amin HM and Lai R: Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 110:2259–2267. 2007.PubMed/NCBI | |
Chiarle R, Voena C, Ambrogio C, Piva R and Inghirami G: The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 8:11–23. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Rodig SJ, Cirieac LR and Janne PA: The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 46:1773–1780. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K, Choi YL, Togashi Y, et al: KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 15:3143–3149. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rikova K, Guo A, Zeng Q, et al: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI | |
Inamura K, Takeuchi K, Togashi Y, et al: EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 3:13–17. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rodig SJ, Mino-Kenudson M, Dacic S, et al: Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 15:5216–5223. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Yeap BY, Mino-Kenudson M, et al: Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 27:4247–4253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wong DW, Leung EL, So KK, et al: The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 115:1723–1733. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang S, Yang X, et al: Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 9:1882010. View Article : Google Scholar : PubMed/NCBI | |
Koh Y, Kim DW, Kim TM, et al: Clinicopathologic characteristics and outcomes of patients with anaplastic lymphoma kinase-positive advanced pulmonary adenocarcinoma. J Thorac Oncol. 6:905–912. 2011. View Article : Google Scholar | |
Barlesi F, Blons H, Beau-Faller M, et al: Biomarkers (BM) France: results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). J Clin Oncol. 31:80002013. | |
Johnson BE, Kris MG, Berry LD, et al: A multicenter effort to identify driver mutations and employ targeted therapy in patients with lung adenocarcinomas: The Lung Cancer Mutation Consortium (LCMC). J Clin Oncol. 31:80192013. | |
Rosell R, Massuti Sureda B, Costa C, et al: Concomitant actionable mutations and overall survival (OS) in EGFR-mutant non-small-cell lung cancer (NSCLC) patients (p) included in the EURTAC trial: EGFR L858R, EGFR T790M, TP53 R273H and EML4-ALK. Ann Oncol. 23(Suppl 9): ixe22 (LBA31)2012. | |
Rosell R, Carcereny E, Gervais R, et al: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicenter, open-label, randomised phase 3 trial. Lancet Oncol. 13:239–246. 2012. View Article : Google Scholar | |
Lindeman NI, Cagle PT, Beasley MB, et al: Molecular testing guidelinefor selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors; guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 8:823–859. 2013. | |
Camidge DR, Kono SA, Flacco A, et al: Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 16:5581–5590. 2010. View Article : Google Scholar | |
Park HS, Lee JK, Kim DW, et al: Immunohistochemical screening for anaplastic lymphoma kinase (ALK) rearrangement in advanced non-small cell lung cancer patients. Lung Cancer. 77:288–292. 2012. View Article : Google Scholar : PubMed/NCBI | |
Minca EC, Portier BP, Wang Z, et al: ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH. J Mol Diagn. 15:341–346. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sholl LM, Weremowicz S, Gray SW, et al: Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol. 8:322–328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Martinez P, Hernández-Losa J, Montero MÁ, et al: Fluorescence in situ hybridization and immunohistochemistry as diagnostic methods for ALK positive non-small cell lung cancer patients. PLoS One. 8:e522612013. View Article : Google Scholar : PubMed/NCBI | |
Conklin CM, Craddock KJ, Have C, et al: Immunohistochemistry is a reliable screening tool for identification of ALK rearrangement in non-small-cell lung carcinoma and is antibody dependent. J Thorac Oncol. 8:45–51. 2013. View Article : Google Scholar : PubMed/NCBI | |
Christensen JG, Zou HY, Arango ME, et al: Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 6:3314–3322. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cui JJ, Tran-Dubé M, Shen H, et al: Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 54:6342–6363. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kwak EL, Camidge DR, Clark J, et al: Clinical activity observed in a phase I dose escalation trial of an oral c-met and ALK inhibitor, PF-02341066. J Clin Oncol. 27(15S): 148s35092009. | |
Kwak EL, Bang YJ, Camidge DR, et al: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camidge DR, Bang Y-B, Kwak EL, et al: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 13:1011–1019. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Yeap BY, Solomon BJ, et al: Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12:1004–1012. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Ahn M, Yang P, et al: Updated results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). Ann Oncol. 23(Suppl 9): ix4021230PD2012. | |
Shaw AT, Kim DW, Nakagawa K, et al: Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 368:2385–2394. 2013. View Article : Google Scholar | |
Weickhardt AJ, Rothman MS, Salian-Mehta S, et al: Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 118:5302–5309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weickhardt AJ, Doebele RC, Purcell WT, et al: Symptomatic reduction in free testosterone levels secondary to crizotinib use in male cancer patients. Cancer. 119:2383–2390. 2013. View Article : Google Scholar : PubMed/NCBI | |
A clinical trial testing the efficacy of crizotinib versus standard chemotherapy pemetrexed plus cisplatin or carboplatin in patients with ALK positive non squamous cancer of the lung (PROFILE 1014). http://clinicaltrials.gov/ct2/show/NCT01154140. Accessed March 15, 2014 | |
Choi YL, Soda M, Yamashita Y, et al: EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 363:1734–1739. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Koivunen J, Ogino A, et al: A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 71:6051–6060. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katayama R, Khan TM, Benes C, et al: Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 108:7535–7540. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang F, Keats J, et al: Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 78:999–1005. 2011. View Article : Google Scholar : PubMed/NCBI | |
Katayama R, Shaw AT, Khan TM, et al: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 4:120ra172012.PubMed/NCBI | |
Doebele RC, Pilling AB, Aisner DL, et al: Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 18:1472–1482. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lovly CM and Pao W: Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med. 4:120ps22012.PubMed/NCBI | |
Doebele RC, Aisner DL, Le AT, et al: Analysis of resistance mechanisms to ALK kinase inhibitors in ALK+ NSCLC patients. J Clin Oncol. 30(15S): 75042012. | |
Camidge DR, Bang Y, Kwak EL, et al: Progression-free survival (PFS) from a phase I study of crizotinib (PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 29(15S): 25012011. | |
Shaw AT, Mehra R, Kim DW, et al: Clinical activity of the ALK inhibitor LDK378 in advanced, ALK-positive NSCLC. J Clin Oncol. 31(15S): 80102013. | |
Shaw AT, Mok T, Spigel DR, et al: A phase II single-arm study of LDK378 in patients with ALK-activated (ALK+) non-small cell lung cancer (NSCLC) previously treated with chemotherapy and crizotinib (CRZ). J Clin Oncol. 31(15S): TPS81192013. | |
Seto T, Kiura K, Nishio M, et al: CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1–2 study. Lancet Oncol. 14:590–598. 2013.PubMed/NCBI | |
Gadgeel S, Ou SH, Chiappori AA, et al: A Phase 1 dose escalation study of a new ALK inhibitor, CH5424802/RO5424802, in ALK+ non-small cell lung cancer (NSCLC) patients who have failed crizotinib (AF-002JG/NP28761, NCT01588028). J Thorac Oncol. 8(Suppl 2): S199, O16.062013. | |
A study of RO5424802 in patients with non-small cell lung cancer who have ALK mutation and failed crizotinib treatment. http://clinicaltrials.gov/show/NCT01801111. Accessed March 15, 2014 | |
Camidge DR, Bazhenova L, Salgia R, et al: First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies: updated results. J Clin Oncol. 31(15S): 80312013. | |
Chen Z, Sasaki T, Tan X, et al: Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res. 70:9827–9836. 2010. View Article : Google Scholar : PubMed/NCBI | |
Socinski MA, Goldman J, El-Hariry I, et al: A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res. 19:3068–3077. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sequist LV, Gettinger S, Senzer NN, et al: Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol. 28:4953–4960. 2010. View Article : Google Scholar : PubMed/NCBI | |
Felip E, Carcereny E, Barlesi F, et al: Phase II activity of the Hsp90 inhibitor AUY922 in patients with ALK-rearranged (ALK+) or EGFR-mutated advanced non-small cell lung cancer (NSCLC). Ann Oncol. 23(Suppl 9): ix152–ix174. 4382012. | |
A study of ganetespib in subjects with ALK-positive non-small-cell lung cancer (NSCLC) (CHIARA). http://clinicaltrials.gov/show/NCT01562015. Accessed March 15, 2014 | |
Crizotinib and ganetespib (STA-9090) in ALK positive lung cancers. http://clinicaltrials.gov/show/NCT01579994. Accessed March 15, 2014 | |
AUY922 for advanced ALK-positive NSCLC. http://clinicaltrials.gov/show/NCT01752400. Accessed March 15, 2014 | |
Phase Ib study of LDK378 and AUY922 in ALK-rearranged non-small cell lung cancer. http://clinicaltrials.gov/show/NCT01772797. Accessed March 15, 2014 | |
Camidge DR, Kono SA, Lu X, et al: Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J Thorac Oncol. 6:774–780. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JO, Kim TM, Lee SH, et al: Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J Thorac Oncol. 6:1474–1480. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takezawa K, Okamoto I, Okamoto W, et al: Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer. Br J Cancer. 104:1594–1601. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Varghese AM, Solomon BJ, et al: Pemetrexed-based chemotherapy in patients with advanced, ALK-positive non-small cell lung cancer. Ann Oncol. 24:59–66. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rimkunas VM, Crosby KE, Li D, et al: Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res. 18:4449–4457. 2012. View Article : Google Scholar | |
Takeuchi K, Soda M, Togashi Y, et al: RET, ROS1 and ALK fusions in lung cancer. Nat Med. 18:378–381. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bergethon K, Shaw AT, Ou SH, et al: ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 30:863–870. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yasuda H, de Fiqueiredo-Pontes LL, Kobayashi S and Costa DB: Preclinical rationale for use of the clinically available multitargeted tyrosine kinase inhibitor crizotinib in ROS1-translocated lung cancer. J Thorac Oncol. 7:1086–1090. 2012. View Article : Google Scholar | |
Shaw AT, Camidge DR, Engelman JA, et al: Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol. 30(15S): 75082012. | |
Awad MM, Katayama R, McTigue M, et al: Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 368:2395–2401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weickhardt AJ, Scheier B, Burke JM, et al: Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene addicted non-small cell lung cancer. J Thorac Oncol. 7:1807–1814. 2012. View Article : Google Scholar : PubMed/NCBI | |
Costa DB, Kobayashi S, Pandya SS and Yeo WL: CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 29:e443–e445. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chun SG, Choe KS, Iyengar P, Yordy JS and Timmerman RD: Isolated central nervous system progression on crizotinib: an Achilles heel of non-small cell lung cancer with EML4-ALK translocations? Cancer Biol Ther. 13:1376–1383. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maillet D, Martel-Lafay I, Arpin D and Perol M: Ineffectiveness of crizotinib on brain metastases in two cases of lung adenocarcinoma with EML4-ALK rearrangement. J Thorac Oncol. 8:e30–e31. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim YH, Ozasa H, Nagai H, et al: High-dose crizotinib for brain metastases refractory to standard-dose crizotinib. J Thorac Oncol. 8:e85–e86. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita Y, Koga Y, Sakamoto A and Hidaka K: Long-lasting response to crizotinib in brain metastases due to EML4-ALK-rearranged non-small-cell lung cancer. BMJ Case Rep. 2013. View Article : Google Scholar | |
Peled N, Zach L, Liran O, Ilouze M, Bunn PA Jr and Hirsch FR: Effective crizotinib schedule for brain metastases in ALK rearrangement metastatic non-small-cell lung cancer. J Thorac Oncol. 8:e112–e113. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ou SH, Gadgeel S, Chiappori AA, et al: Consistent therapeutic efficacy of CH5424802/RO5424802 in brain metastases among crizotinib-refractory ALK-positive non-small cell lung cancer (NSCLC) patients in an ongoing phase I/II study (AF-002JG/NP28761, NCT01588028). J Thorac Oncol. 8(Suppl 2): S200 O16.07. 2013. | |
Loscher W and Potschka H: Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2:86–98. 2005. View Article : Google Scholar : PubMed/NCBI |