|
1
|
Rossi A, Torri V, Garassino MC, Porcu L
and Galetta D: The impact of personalized medicine on survival:
comparisons of results in metastatic breast, colorectal and
non-small-cell lung cancers. Cancer Treat Rev. 40:485–494. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Scagliotti GV, Parikh P, von Pawel J, et
al: Phase III study comparing cisplatin plus gemcitabine with
cisplatin plus pemetrexed in chemotherapy-naive patients with
advanced-stage non-small-cell lung cancer. J Clin Oncol.
26:3543–3551. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sandler A, Gray R, Perry MC, et al:
Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell
lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rossi A, Pasquale R, Esposito C and
Normanno N: Should epidermal growth factor receptor tyrosine kinae
inhibitors be considered ideal drugs for the treatment of selected
advanced non-small cell lung cancer patients? Cancer Treat Rev.
39:489–497. 2013. View Article : Google Scholar
|
|
5
|
Soda M, Choi YL, Enomoto M, et al:
Identification of the transforming EML4-ALK fusion gene in
non-small-cell lung cancer. Nature. 448:561–566. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Amin HM and Lai R: Pathobiology of
ALK+ anaplastic large-cell lymphoma. Blood.
110:2259–2267. 2007.PubMed/NCBI
|
|
7
|
Chiarle R, Voena C, Ambrogio C, Piva R and
Inghirami G: The anaplastic lymphoma kinase in the pathogenesis of
cancer. Nat Rev Cancer. 8:11–23. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sasaki T, Rodig SJ, Cirieac LR and Janne
PA: The biology and treatment of EML4-ALK non-small cell lung
cancer. Eur J Cancer. 46:1773–1780. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Takeuchi K, Choi YL, Togashi Y, et al:
KIF5B-ALK, a novel fusion oncokinase identified by an
immunohistochemistry-based diagnostic system for ALK-positive lung
cancer. Clin Cancer Res. 15:3143–3149. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rikova K, Guo A, Zeng Q, et al: Global
survey of phosphotyrosine signaling identifies oncogenic kinases in
lung cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Inamura K, Takeuchi K, Togashi Y, et al:
EML4-ALK fusion is linked to histological characteristics in a
subset of lung cancers. J Thorac Oncol. 3:13–17. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rodig SJ, Mino-Kenudson M, Dacic S, et al:
Unique clinicopathologic features characterize ALK-rearranged lung
adenocarcinoma in the western population. Clin Cancer Res.
15:5216–5223. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shaw AT, Yeap BY, Mino-Kenudson M, et al:
Clinical features and outcome of patients with non-small-cell lung
cancer who harbor EML4-ALK. J Clin Oncol. 27:4247–4253. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wong DW, Leung EL, So KK, et al: The
EML4-ALK fusion gene is involved in various histologic types of
lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer.
115:1723–1733. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang X, Zhang S, Yang X, et al: Fusion of
EML4 and ALK is associated with development of lung adenocarcinomas
lacking EGFR and KRAS mutations and is correlated with ALK
expression. Mol Cancer. 9:1882010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Koh Y, Kim DW, Kim TM, et al:
Clinicopathologic characteristics and outcomes of patients with
anaplastic lymphoma kinase-positive advanced pulmonary
adenocarcinoma. J Thorac Oncol. 6:905–912. 2011. View Article : Google Scholar
|
|
17
|
Barlesi F, Blons H, Beau-Faller M, et al:
Biomarkers (BM) France: results of routine EGFR, HER2, KRAS, BRAF,
PI3KCA mutations detection and EML4-ALK gene fusion assessment on
the first 10,000 non-small cell lung cancer (NSCLC) patients (pts).
J Clin Oncol. 31:80002013.
|
|
18
|
Johnson BE, Kris MG, Berry LD, et al: A
multicenter effort to identify driver mutations and employ targeted
therapy in patients with lung adenocarcinomas: The Lung Cancer
Mutation Consortium (LCMC). J Clin Oncol. 31:80192013.
|
|
19
|
Rosell R, Massuti Sureda B, Costa C, et
al: Concomitant actionable mutations and overall survival (OS) in
EGFR-mutant non-small-cell lung cancer (NSCLC) patients (p)
included in the EURTAC trial: EGFR L858R, EGFR T790M, TP53 R273H
and EML4-ALK. Ann Oncol. 23(Suppl 9): ixe22 (LBA31)2012.
|
|
20
|
Rosell R, Carcereny E, Gervais R, et al:
Erlotinib versus standard chemotherapy as first-line treatment for
European patients with advanced EGFR mutation-positive
non-small-cell lung cancer (EURTAC): a multicenter, open-label,
randomised phase 3 trial. Lancet Oncol. 13:239–246. 2012.
View Article : Google Scholar
|
|
21
|
Lindeman NI, Cagle PT, Beasley MB, et al:
Molecular testing guidelinefor selection of lung cancer patients
for EGFR and ALK tyrosine kinase inhibitors; guideline from the
College of American Pathologists, International Association for the
Study of Lung Cancer, and Association for Molecular Pathology. J
Thorac Oncol. 8:823–859. 2013.
|
|
22
|
Camidge DR, Kono SA, Flacco A, et al:
Optimizing the detection of lung cancer patients harboring
anaplastic lymphoma kinase (ALK) gene rearrangements potentially
suitable for ALK inhibitor treatment. Clin Cancer Res.
16:5581–5590. 2010. View Article : Google Scholar
|
|
23
|
Park HS, Lee JK, Kim DW, et al:
Immunohistochemical screening for anaplastic lymphoma kinase (ALK)
rearrangement in advanced non-small cell lung cancer patients. Lung
Cancer. 77:288–292. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Minca EC, Portier BP, Wang Z, et al: ALK
status testing in non-small cell lung carcinoma: correlation
between ultrasensitive IHC and FISH. J Mol Diagn. 15:341–346. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sholl LM, Weremowicz S, Gray SW, et al:
Combined use of ALK immunohistochemistry and FISH for optimal
detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol.
8:322–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Martinez P, Hernández-Losa J, Montero MÁ,
et al: Fluorescence in situ hybridization and immunohistochemistry
as diagnostic methods for ALK positive non-small cell lung cancer
patients. PLoS One. 8:e522612013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Conklin CM, Craddock KJ, Have C, et al:
Immunohistochemistry is a reliable screening tool for
identification of ALK rearrangement in non-small-cell lung
carcinoma and is antibody dependent. J Thorac Oncol. 8:45–51. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Christensen JG, Zou HY, Arango ME, et al:
Cytoreductive antitumor activity of PF-2341066, a novel inhibitor
of anaplastic lymphoma kinase and c-Met, in experimental models of
anaplastic large-cell lymphoma. Mol Cancer Ther. 6:3314–3322. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cui JJ, Tran-Dubé M, Shen H, et al:
Structure based drug design of crizotinib (PF-02341066), a potent
and selective dual inhibitor of mesenchymal-epithelial transition
factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med
Chem. 54:6342–6363. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kwak EL, Camidge DR, Clark J, et al:
Clinical activity observed in a phase I dose escalation trial of an
oral c-met and ALK inhibitor, PF-02341066. J Clin Oncol. 27(15S):
148s35092009.
|
|
31
|
Kwak EL, Bang YJ, Camidge DR, et al:
Anaplastic lymphoma kinase inhibition in non-small-cell lung
cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Camidge DR, Bang Y-B, Kwak EL, et al:
Activity and safety of crizotinib in patients with ALK-positive
non-small-cell lung cancer: updated results from a phase 1 study.
Lancet Oncol. 13:1011–1019. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shaw AT, Yeap BY, Solomon BJ, et al:
Effect of crizotinib on overall survival in patients with advanced
non-small-cell lung cancer harbouring ALK gene rearrangement: a
retrospective analysis. Lancet Oncol. 12:1004–1012. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim D, Ahn M, Yang P, et al: Updated
results of a global phase II study with crizotinib in advanced
ALK-positive non-small cell lung cancer (NSCLC). Ann Oncol.
23(Suppl 9): ix4021230PD2012.
|
|
35
|
Shaw AT, Kim DW, Nakagawa K, et al:
Crizotinib versus chemotherapy in advanced ALK-positive lung
cancer. N Engl J Med. 368:2385–2394. 2013. View Article : Google Scholar
|
|
36
|
Weickhardt AJ, Rothman MS, Salian-Mehta S,
et al: Rapid-onset hypogonadism secondary to crizotinib use in men
with metastatic nonsmall cell lung cancer. Cancer. 118:5302–5309.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Weickhardt AJ, Doebele RC, Purcell WT, et
al: Symptomatic reduction in free testosterone levels secondary to
crizotinib use in male cancer patients. Cancer. 119:2383–2390.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
A clinical trial testing the efficacy of
crizotinib versus standard chemotherapy pemetrexed plus cisplatin
or carboplatin in patients with ALK positive non squamous cancer of
the lung (PROFILE 1014). http://clinicaltrials.gov/ct2/show/NCT01154140.
Accessed March 15, 2014
|
|
39
|
Choi YL, Soda M, Yamashita Y, et al:
EML4-ALK mutations in lung cancer that confer resistance to ALK
inhibitors. N Engl J Med. 363:1734–1739. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sasaki T, Koivunen J, Ogino A, et al: A
novel ALK secondary mutation and EGFR signaling cause resistance to
ALK kinase inhibitors. Cancer Res. 71:6051–6060. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Katayama R, Khan TM, Benes C, et al:
Therapeutic strategies to overcome crizotinib resistance in
non-small cell lung cancers harboring the fusion oncogene EML4-ALK.
Proc Natl Acad Sci USA. 108:7535–7540. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang S, Wang F, Keats J, et al:
Crizotinib-resistant mutants of EML4-ALK identified through an
accelerated mutagenesis screen. Chem Biol Drug Des. 78:999–1005.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Katayama R, Shaw AT, Khan TM, et al:
Mechanisms of acquired crizotinib resistance in ALK-rearranged lung
cancers. Sci Transl Med. 4:120ra172012.PubMed/NCBI
|
|
44
|
Doebele RC, Pilling AB, Aisner DL, et al:
Mechanisms of resistance to crizotinib in patients with ALK gene
rearranged non-small cell lung cancer. Clin Cancer Res.
18:1472–1482. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lovly CM and Pao W: Escaping ALK
inhibition: mechanisms of and strategies to overcome resistance.
Sci Transl Med. 4:120ps22012.PubMed/NCBI
|
|
46
|
Doebele RC, Aisner DL, Le AT, et al:
Analysis of resistance mechanisms to ALK kinase inhibitors in
ALK+ NSCLC patients. J Clin Oncol. 30(15S):
75042012.
|
|
47
|
Camidge DR, Bang Y, Kwak EL, et al:
Progression-free survival (PFS) from a phase I study of crizotinib
(PF-02341066) in patients with ALK-positive non-small cell lung
cancer (NSCLC). J Clin Oncol. 29(15S): 25012011.
|
|
48
|
Shaw AT, Mehra R, Kim DW, et al: Clinical
activity of the ALK inhibitor LDK378 in advanced, ALK-positive
NSCLC. J Clin Oncol. 31(15S): 80102013.
|
|
49
|
Shaw AT, Mok T, Spigel DR, et al: A phase
II single-arm study of LDK378 in patients with ALK-activated
(ALK+) non-small cell lung cancer (NSCLC) previously
treated with chemotherapy and crizotinib (CRZ). J Clin Oncol.
31(15S): TPS81192013.
|
|
50
|
Seto T, Kiura K, Nishio M, et al:
CH5424802 (RO5424802) for patients with ALK-rearranged
advanced non-small-cell lung cancer (AF-001JP study): a single-arm,
open-label, phase 1–2 study. Lancet Oncol. 14:590–598.
2013.PubMed/NCBI
|
|
51
|
Gadgeel S, Ou SH, Chiappori AA, et al: A
Phase 1 dose escalation study of a new ALK inhibitor,
CH5424802/RO5424802, in ALK+ non-small cell lung cancer (NSCLC)
patients who have failed crizotinib (AF-002JG/NP28761,
NCT01588028). J Thorac Oncol. 8(Suppl 2): S199, O16.062013.
|
|
52
|
A study of RO5424802 in patients with
non-small cell lung cancer who have ALK mutation and failed
crizotinib treatment. http://clinicaltrials.gov/show/NCT01801111.
Accessed March 15, 2014
|
|
53
|
Camidge DR, Bazhenova L, Salgia R, et al:
First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113
in patients with advanced malignancies: updated results. J Clin
Oncol. 31(15S): 80312013.
|
|
54
|
Chen Z, Sasaki T, Tan X, et al: Inhibition
of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced
by EML4-ALK fusion oncogene. Cancer Res. 70:9827–9836. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Socinski MA, Goldman J, El-Hariry I, et
al: A multicenter phase II study of ganetespib monotherapy in
patients with genotypically defined advanced non-small cell lung
cancer. Clin Cancer Res. 19:3068–3077. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sequist LV, Gettinger S, Senzer NN, et al:
Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in
patients with molecularly defined non-small-cell lung cancer. J
Clin Oncol. 28:4953–4960. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Felip E, Carcereny E, Barlesi F, et al:
Phase II activity of the Hsp90 inhibitor AUY922 in patients with
ALK-rearranged (ALK+) or EGFR-mutated advanced non-small
cell lung cancer (NSCLC). Ann Oncol. 23(Suppl 9): ix152–ix174.
4382012.
|
|
58
|
A study of ganetespib in subjects with
ALK-positive non-small-cell lung cancer (NSCLC) (CHIARA).
http://clinicaltrials.gov/show/NCT01562015.
Accessed March 15, 2014
|
|
59
|
Crizotinib and ganetespib (STA-9090) in
ALK positive lung cancers. http://clinicaltrials.gov/show/NCT01579994.
Accessed March 15, 2014
|
|
60
|
AUY922 for advanced ALK-positive NSCLC.
http://clinicaltrials.gov/show/NCT01752400.
Accessed March 15, 2014
|
|
61
|
Phase Ib study of LDK378 and AUY922 in
ALK-rearranged non-small cell lung cancer. http://clinicaltrials.gov/show/NCT01772797.
Accessed March 15, 2014
|
|
62
|
Camidge DR, Kono SA, Lu X, et al:
Anaplastic lymphoma kinase gene rearrangements in non-small cell
lung cancer are associated with prolonged progression-free survival
on pemetrexed. J Thorac Oncol. 6:774–780. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lee JO, Kim TM, Lee SH, et al: Anaplastic
lymphoma kinase translocation: a predictive biomarker of pemetrexed
in patients with non-small cell lung cancer. J Thorac Oncol.
6:1474–1480. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Takezawa K, Okamoto I, Okamoto W, et al:
Thymidylate synthase as a determinant of pemetrexed sensitivity in
non-small cell lung cancer. Br J Cancer. 104:1594–1601. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shaw AT, Varghese AM, Solomon BJ, et al:
Pemetrexed-based chemotherapy in patients with advanced,
ALK-positive non-small cell lung cancer. Ann Oncol. 24:59–66. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rimkunas VM, Crosby KE, Li D, et al:
Analysis of receptor tyrosine kinase ROS1-positive tumors in
non-small cell lung cancer: identification of a FIG-ROS1 fusion.
Clin Cancer Res. 18:4449–4457. 2012. View Article : Google Scholar
|
|
67
|
Takeuchi K, Soda M, Togashi Y, et al: RET,
ROS1 and ALK fusions in lung cancer. Nat Med. 18:378–381. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bergethon K, Shaw AT, Ou SH, et al: ROS1
rearrangements define a unique molecular class of lung cancers. J
Clin Oncol. 30:863–870. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yasuda H, de Fiqueiredo-Pontes LL,
Kobayashi S and Costa DB: Preclinical rationale for use of the
clinically available multitargeted tyrosine kinase inhibitor
crizotinib in ROS1-translocated lung cancer. J Thorac Oncol.
7:1086–1090. 2012. View Article : Google Scholar
|
|
70
|
Shaw AT, Camidge DR, Engelman JA, et al:
Clinical activity of crizotinib in advanced non-small cell lung
cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol.
30(15S): 75082012.
|
|
71
|
Awad MM, Katayama R, McTigue M, et al:
Acquired resistance to crizotinib from a mutation in CD74-ROS1. N
Engl J Med. 368:2395–2401. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Weickhardt AJ, Scheier B, Burke JM, et al:
Local ablative therapy of oligoprogressive disease prolongs disease
control by tyrosine kinase inhibitors in oncogene addicted
non-small cell lung cancer. J Thorac Oncol. 7:1807–1814. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Costa DB, Kobayashi S, Pandya SS and Yeo
WL: CSF concentration of the anaplastic lymphoma kinase inhibitor
crizotinib. J Clin Oncol. 29:e443–e445. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chun SG, Choe KS, Iyengar P, Yordy JS and
Timmerman RD: Isolated central nervous system progression on
crizotinib: an Achilles heel of non-small cell lung cancer with
EML4-ALK translocations? Cancer Biol Ther. 13:1376–1383. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Maillet D, Martel-Lafay I, Arpin D and
Perol M: Ineffectiveness of crizotinib on brain metastases in two
cases of lung adenocarcinoma with EML4-ALK rearrangement. J Thorac
Oncol. 8:e30–e31. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kim YH, Ozasa H, Nagai H, et al: High-dose
crizotinib for brain metastases refractory to standard-dose
crizotinib. J Thorac Oncol. 8:e85–e86. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kinoshita Y, Koga Y, Sakamoto A and Hidaka
K: Long-lasting response to crizotinib in brain metastases due to
EML4-ALK-rearranged non-small-cell lung cancer. BMJ Case Rep. 2013.
View Article : Google Scholar
|
|
78
|
Peled N, Zach L, Liran O, Ilouze M, Bunn
PA Jr and Hirsch FR: Effective crizotinib schedule for brain
metastases in ALK rearrangement metastatic non-small-cell lung
cancer. J Thorac Oncol. 8:e112–e113. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ou SH, Gadgeel S, Chiappori AA, et al:
Consistent therapeutic efficacy of CH5424802/RO5424802 in brain
metastases among crizotinib-refractory ALK-positive non-small cell
lung cancer (NSCLC) patients in an ongoing phase I/II study
(AF-002JG/NP28761, NCT01588028). J Thorac Oncol. 8(Suppl 2): S200
O16.07. 2013.
|
|
80
|
Loscher W and Potschka H: Blood-brain
barrier active efflux transporters: ATP-binding cassette gene
family. NeuroRx. 2:86–98. 2005. View Article : Google Scholar : PubMed/NCBI
|