1
|
Park DH, Xu HD, Shim J, Li YC, Lee JH, Cho
SC, Han SS, Lee YL, Lee MJ and Kwon SW: Stephania delavayi Diels.
Inhibits breast carcinoma proliferation through the p38MAPK/
NF-κB/COX-2 pathway. Oncol Rep. 26:833–841. 2011.PubMed/NCBI
|
2
|
Baba M and Ono M: NF-κB activity
inhibitor. US Patent 6123943. Filed March 10, 1998; issued
September 26, 2000.
|
3
|
Nawawi A, Nakamura N, Meselhy MR, Hattori
M, Kurokawa M, Shiraki K, Kashiwaba N and Ono M: In vivo antiviral
activity of Stephania cepharantha against herpes simplex virus
type-1. Phytother Res. 15:497–500. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ohsaki M, Kurokawa M, Nawawi A, Nakamura
N, Hattori M and Shiraki K: Characterization of anti-herpes simplex
virus type 1 activity of an alkaloid FK-3000 from Stephania
cepharantha. J Trad Med. 19:129–136. 2002.
|
5
|
Ma C-M, Nakamura N, Miyashiro H, Hattori
M, Komatsu K, Kawahata T and Otake T: Screening of Chinese and
Mongolian herbal drugs for anti-human immunodeficiency virus type 1
(HIV-1) activity. Phytother Res. 16:186–189. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Masaki T, Shiratori Y, Rengifo W, Igarashi
K, Matsumoto K, Nishioka M, Hatanaka Y and Omata M: Hepatocellular
carcinoma cell cycle: study of Long-Evans Cinnamon rats.
Hepatology. 32:711–720. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Park DH, Shin JW, Park SK, Seo JN, Li L,
Jang JJ and Lee MJ: Diethylnitrosamine (DEN) induces irreversible
hepatocellular carcinogenesis through overexpression of G1/S-phase
regulatory proteins in rat. Toxicol Lett. 191:321–326. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Masaki T, Shiratori Y, Rengifo W,
Igarashhi K, Yamagata M, Kurokohchi K, Uchida N, Miyauchi Y,
Yoshiji H, Watanabe S, Omata M and Kuriyama S: Cyclins and
cyclin-dependent kinases: comparative study of hepatocellular
carcinoma versus cirrhosis. Hepatology. 37:534–543. 2003.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bana E, Sibille E, Valente S, Cerella C,
Chaimbault P, Kirsch G, Dicato M, Diederich M and Bagrel D: A novel
coumarin-quinone derivative SV37 inhibits CDC25 phosphatases,
impairs proliferation, and induces cell death. Mol Carcinog. Oct
24–2013.(Epub ahead of print). View
Article : Google Scholar : PubMed/NCBI
|
10
|
Falco MD and Luca AD: Cell cycle as a
target of antineoplastic drugs. Curr Pharm Des. 16:1417–1426. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Nilsson I and Hoffmann I: Cell cycle
regulation by the cdc25 phosphatase family. Prog Cell Cycle Res.
4:107–114. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Boutros R, Dozier C and Ducommun B: The
When and where of CDC25 phosphatase. Curr Opin Cell Biol.
18:185–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Norbury C, Blow and Nurse P: Regulatory
phosphorylation of the p34cdc2 protein kinase in
vertebrates. EMBO J. 10:3321–3329. 1991.PubMed/NCBI
|
14
|
Lavecchia A, Di Giovanni C and Novellino
E: Inhibitors of Cdc25 phosphatases as anticancer agents: a patent
review. Expert Opin Ther Pat. 20:405–425. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brezak MC, Quaranta M, Mondésert O,
Galacera MO, Lavergne O, Alby F, Cazales M, Baldin V, Thurieau C,
Harnett J, Lanco C, Kasprzyk PG, Prevost GP and Ducommun B: A novel
synthetic inhibitor of CDC25 phosphastases: BN82002. Cancer Res.
64:3320–3325. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Deep G, Singh RP, Agarwal C, Kroll DJ and
Agarwal R: Silymarin and silibinin cause G1 and G2-M cell cycle
arrest via distinct circuitries in human prostate cancer PC3 cells:
a comparison of flavanone silibinin with flavanolignan mixture
silymarin. Oncogene. 25:1053–1069. 2006. View Article : Google Scholar
|
17
|
Brisson M, Nguyen T, Vogt A, Yalowich J,
Giorgianni A, Tobi D, Bahar I, Stephenson CRJ, Wipf P and Lazo JS:
Discovery and Characterization of novel small molecule inhibitors
of human cdc25B dual specificity phosphatase. Mol Pharmacol.
66:824–833. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brezak MC, Quaranta M, Contour-Galcera MO,
Lavergne O, Mondesert O, Auvray P, Kasprzyk PG, Prevost GP and
Ducommun B: Inhibition of human tumor cell growth in vivo by an
orally bioavailable inhibitor of CDC25 phosphatases. Mol Cancer
Ther. 4:1378–1387. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Brezak MC, Valette A, Quaranta M,
Contour-Galcera MO, Jullien D, Lavergne O, Frongia C, Bigg D,
Kasprzyk PG, Prevost GP and Ducommun B: IRC-083864, a novel bis
quinine inhibitor of CDC25 phosphatases active against human cancer
cells. Int J Cancer. 124:1449–1456. 2009. View Article : Google Scholar
|
20
|
Mikhailov A, Shinohara M and Rieder C: The
p38-mediated stress-activated checkpoint. Cell Cycle. 4:57–62.
2005. View Article : Google Scholar
|
21
|
Hirose Y, Katayama M, Mirzoeva OK, Berger
MS and Pieper RO: Akt activation suppresses chk2-mediated,
methylating agent-induced G2 arrest and protects from
Temozolomide-induced mitotic catastrophe and cellular senescence.
Cancer Res. 65:4861–4869. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kashiwaba N, Morooka S, Kimura M, Ono M,
Toda J, Suzuki H and Sano T: New morphinane and hasubanane
alkaloids form Stephania cepharantha. J Nat Prod. 59:476–480. 1996.
View Article : Google Scholar
|
23
|
Boutros R, Lobjois V and Ducommun B: CDC25
phosphastases in cancer cells: key players? Good targets? Nature.
7:495–507. 2007.
|
24
|
Wood CD, Thornton TM, Sabio G, Davis RA
and Rincon M: Nuclear localization of p38MAPK in response to DNA
damage. Int J Biol Sci. 5:428–437. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Underwood DC, Osborn RR, Koitzer CJ, Adams
JL, Lee JC, Webb EF, Carpenter DC, Bochnowicz S, Thomas HC, Hay DW
and Griswold DE: SB 239063, a potent p38 MAP kinase inhibitor,
reduces inflammatory cytokine production, airways eosinophil
infiltration, and persistence. J Pharmacol Exp Ther. 293:281–288.
2000.PubMed/NCBI
|
26
|
O’Farrell PH: Triggering the
all-or-nothing switch into mitosis. Trends Cell Biol. 11:512–519.
2001. View Article : Google Scholar
|
27
|
Kim KR, Kwon JL, Kim JS, No Z, Kim HR and
Cheon HG: EK-6136
(3-methyl-4-(O-methyl-oximino)-1-phenylpyrazolin-5-one): a novel
Cdc25B inhibitor with antiproliferative activity. Eur J Pharmacol.
528:37–42. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sherr CJ and Roberts JM: CDK inhibitors:
positive and negative regulators of G1-phase progression. Genes
Dev. 13:1501–1512. 1997. View Article : Google Scholar
|
29
|
LaBaer J, Garrett MD, Stevenson LF,
Slingerland JM, Sandhu C, Chou HS, Fattaey A and Harlow E: New
functional activities for the p21 family of CDK inhibitors. Genes
Dev. 11:847–862. 1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cheng M, Olivier P, Diehl JA, Fero M,
Roussel MF, Foberts JM and Sherr CJ: The p21(CIP1) and p27(Kip1)
CDK ‘inhibitors’ are essential activators of cyclin-D-dependent
kinases in murine fibroblasts. EMBO J. 18:1571–1583. 1999.
View Article : Google Scholar : PubMed/NCBI
|
31
|
|
32
|
Senderowicz AM and Sausville EA:
Preclinical and clinical development of cyclin-dependent kinase
modulators. J Natl Cancer Inst. 92:376–387. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
|
34
|
Jones CB, Clements MK, Wasi S and Daoud
SS: Enhancement of camptothecin-induced cytotoxicity with UCN-01 in
breast cancer cells: abrogation of S/G2 arrest. Cancer Chemother
Pharmacol. 45:252–258. 2000. View Article : Google Scholar
|