1
|
Bast RC Jr, Hennessy B and Mills GB: The
biology of ovarian cancer: new opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Cardone RA, Casavola V and Reshkin SJ: The
role of disturbed pH dynamics and the Na+/H+
exchanger in metastasis. Nat Rev Cancer. 5:786–795. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Sinha S and Yang W: Cellular signaling for
activation of Rho GTPase Cdc42. Cell Signal. 20:1927–1934. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Tsang CM, Lau EP, Di K, et al: Berberine
inhibits Rho GTPases and cell migration at low doses but induces G2
arrest and apoptosis at high doses in human cancer cells. Int J Mol
Med. 24:131–138. 2009.PubMed/NCBI
|
5
|
Zhang S, Schafer-Hales K, Khuri FR, Zhou
W, Vertino PM and Marcus AI: The tumor suppressor LKB1 regulates
lung cancer cell polarity by mediating cdc42 recruitment and
activity. Cancer Res. 68:740–748. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Munoz N, Castellsague X, de Gonzalez AB,
et al: Chapter 1: HPV in the etiology of human cancer. Vaccine.
24(Suppl 3): S1–S10. 2006. View Article : Google Scholar
|
7
|
Woodman CB, Collins SI and Young LS: The
natural history of cervical HPV infection: unresolved issues. Nat
Rev Cancer. 7:11–22. 2007. View
Article : Google Scholar
|
8
|
Lagunas-Martinez A, Madrid-Marina V and
Gariglio P: Modulation of apoptosis by early human papillomavirus
proteins in cervical cancer. Biochim Biophys Acta. 1805:6–16.
2010.
|
9
|
Zhou Q, Huang MZ, Huang S, et al:
Meta-analysis of factors affecting the incidence of cervical cancer
in Chinese married women. Chin J Cancer. 21:125–129. 2011.
|
10
|
Kantrardzic N: Current chemoradiation for
cervical cancer: results of five randomized trials. Med Arh.
64:368–370. 2010.
|
11
|
Jin ZH, Liao GW and Jiang N: Clinical
analysis of 91 cases of young patients with recurent and metastized
cervical cancer. Practical J Cancer. 21:502–503. 2006.
|
12
|
Villalonga P and Ridley AJ: Rho GTPases
and cell cycle control. Growth Factors. 24:159–164. 2006.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Heasman SJ and Ridley AJ: Mammalian Rho
GTPases: new insights into their, functions from in vivo studies.
Nat Rev Mol Cell Biol. 9:690–701. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bustelo XR, Sauzeau V and Berenjeno IM:
GTP-binding proteins of the Rho/Rac family: regulation, effectors
and functions in vivo. Bioessays. 29:356–370. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ellenbroek SI and Collard JG: Rho GTPases:
functions and association with cancer. Clin Exp Metastasis.
24:657–672. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vega FM and Ridley AJ: Rho GTPases in
cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fritz G, Just I and Kaina B: Rho GTPases
are overexpressed in human tumors. Int J Cancer. 81:682–687. 1999.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yilmaz M and Christofori G: Mechanisms of
motility in metastasizing cells. Mol Cancer Res. 8:629–642. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bouzahzah B, Albanese C, Ahmed F, et al:
Rho family GTPases regulate mammary epithelium cell growth and
metastasis through distinguishable pathways. Mol Med. 7:816–830.
2001.
|
20
|
Johnson E, Seachrist DD, DeLeon-Rodriguez
CM, et al: HER2/ErbB2-induced breast cancer cell migration and
invasion require p120 catenin activation of Rac1 and Cdc42. Biol
Chem. 285:29491–29501. 2010. View Article : Google Scholar
|
21
|
Faix J, Breitsprecher D, Stradal TE, et
al: Complex models for simple rods. Int J Biochem Cell Biol.
41:1656–1664. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Buccione R, Caldieri G and Ayala I:
Invadopodia: specialized tumor cell structures for the focal
degradation of the extracellular matrix. Cancer Metastasis Rev.
28:137–149. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fisher KE, Sacharidou A, Stratman AN, et
al: MT1-MMP- and Cdc42-dependent signaling co-regulate cell
invasion and tunnel formation in 3D collagen matrices. J Cell Sci.
122:4558–4569. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamaguchi H, Lorenz M, Kempiak S, et al:
Molecular mechanisms of invadopodium formation: the role of the
N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol.
168:441–452. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pichot CS, Arvanitis C, Hartig SM, et al:
Cdc42-interacting protein 4 promotes breast cancer cell invasion
and formation of invadopodia through activation of N-WASP. Cancer
Res. 70:8347–8356. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Stylli SS, Kaye AH and Lock P:
Invadopodia: at the cutting edge of tumour invasion. J Clin
Neurosci. 15:725–737. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sahai E: Mechanisms of cancer cell
invasion. Curr Opin Genet Dev. 15:87–96. 2005. View Article : Google Scholar : PubMed/NCBI
|