1
|
Sung HJ, Kim J, Kim Y, Jang SW and Ko J:
N-acetyl cysteine suppresses the foam cell formation that is
induced by oxidized low density lipoprotein via regulation of gene
expression. Mol Biol Rep. 39:3001–3007. 2012. View Article : Google Scholar
|
2
|
Cai Y, Li JD and Yan C: Vinpocetine
attenuates lipid accumulation and atherosclerosis formation.
Biochem Biophys Res Commun. 434:439–443. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tsai JY, Su KH, Shyue SK, et al: EGb761
ameliorates the formation of foam cells by regulating the
expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc
Res. 88:415–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cai Y, Wan Z, Sun T, et al:
Diarylquinoline compounds induce autophagy-associated cell death by
inhibiting the Akt pathway and increasing reactive oxygen species
in human nasopharyngeal carcinoma cells. Oncol Rep. 29:983–992.
2013.PubMed/NCBI
|
5
|
Lin CY, Lee TS, Chen CC, et al:
Endothelin-1 exacerbates lipid accumulation by increasing the
protein degradation of the ATP-binding cassette transporter G1 in
macrophages. J Cell Physiol. 226:2198–2205. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saeed O, Otsuka F, Polavarapu R, et al:
Pharmacological suppression of hepcidin increases macrophage
cholesterol efflux and reduces foam cell formation and
atherosclerosis. Arterioscler Thromb Vasc Biol. 32:299–307. 2012.
View Article : Google Scholar :
|
7
|
Zhou F, Pan Y, Huang Z, et al: Visfatin
induces cholesterol accumulation in macrophages through
up-regulation of scavenger receptor-A and CD36. Cell Stress
Chaperones. 18:643–652. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li XY, Kong LX, Li J, He HX and Zhou YD:
Kaempferol suppresses lipid accumulation in macrophages through the
downregulation of cluster of differentiation 36 and the
upregulation of scavenger receptor class B type I and ATP-binding
cassette transporters A1 and G1. Int J Mol Med. 31:331–338.
2013.
|
9
|
Chen B, Ning M and Yang G: Effect of
paeonol on antioxidant and immune regulatory activity in
hepatocellular carcinoma rats. Molecules. 17:4672–4683. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li M, Tan SY, Zhang J and You HX: Effects
of paeonol on intracellular calcium concentration and expression of
RUNX3 in LoVo human colon cancer cells. Mol Med Rep. 7:1425–1430.
2013.PubMed/NCBI
|
11
|
Li N, Fan LL, Sun GP, et al: Paeonol
inhibits tumor growth in gastric cancer in vitro and in vivo. World
J Gastroenterol. 16:4483–4490. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sun GP, Wan X, Xu SP, Wang H, Liu SH and
Wang ZG: Antiproliferation and apoptosis induction of paeonol in
human esophageal cancer cell lines. Dis Esophagus. 21:723–729.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li YJ, Bao JX, Xu JW, Murad F and Bian K:
Vascular dilation by paeonol - a mechanism study. Vascul Pharmacol.
53:169–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hsieh CL, Cheng CY, Tsai TH, et al:
Paeonol reduced cerebral infarction involving the superoxide anion
and microglia activation in ischemia-reperfusion injured rats. J
Ethnopharmacol. 106:208–215. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nizamutdinova IT, Jin YC, Kim JS, et al:
Paeonol and paeoniflorin, the main active principles of Paeonia
albiflora, protect the heart from myocardial ischemia/reperfusion
injury in rats. Planta Med. 74:14–18. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li H, Dai M and Jia W: Paeonol attenuates
high-fat-diet-induced atherosclerosis in rabbits by
anti-inflammatory activity. Planta Med. 75:7–11. 2009. View Article : Google Scholar
|
17
|
Dai M, Zhi X, Peng D and Liu Q: Inhibitory
effect of paeonol on experimental atherosclerosis in quails.
Zhongguo Zhong Yao Za Zhi. 24:488–490. 5121999.(In Chinese).
|
18
|
Shi L, Fan PS, Fang JX and Han ZX:
Inhibitory effects of paeonol on experimental atherosclerosis and
platelet aggregation of rabbit. Zhongguo Yao Li Xue Bao. 9:555–558.
1988.(In Chinese). PubMed/NCBI
|
19
|
Hansson GK: Inflammation, atherosclerosis,
and coronary artery disease. N Engl J Med. 352:1685–1695. 2005.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hirai A, Terano T, Hamazaki T, et al:
Studies on the mechanism of antiaggregatory effect of Moutan
Cortex. Thromb Res. 31:29–40. 1983. View Article : Google Scholar : PubMed/NCBI
|
21
|
Araujo JA, Zhang M and Yin F: Heme
oxygenase-1, oxidation, inflammation, and atherosclerosis. Front
Pharmacol. 3:1192012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Song G, Liu J, Zhao Z, et al: Simvastatin
reduces atherogenesis and promotes the expression of hepatic genes
associated with reverse cholesterol transport in apoE-knockout mice
fed high-fat diet. Lipids Health Dis. 10:82011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hu S, Shen G, Zhao W, Wang F, Jiang X and
Huang D: Paeonol, the main active principles of Paeonia moutan,
ameliorates alcoholic steatohepatitis in mice. J Ethnopharmacol.
128:100–106. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rudolph TK, Rudolph V, Edreira MM, et al:
Nitro-fatty acids reduce atherosclerosis in apolipoprotein
E-deficient mice. Arterioscler Thromb Vasc Biol. 30:938–945. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Nagy N, Melchior-Becker A and Fischer JW:
Long-term treatment with the AT1-receptor antagonist telmisartan
inhibits biglycan accumulation in murine atherosclerosis. Basic Res
Cardiol. 105:29–38. 2010. View Article : Google Scholar
|
26
|
Ayaori M, Sawada S, Yonemura A, et al:
Glucocorticoid receptor regulates ATP-binding cassette
transporter-A1 expression and apolipoprotein-mediated cholesterol
efflux from macrophages. Arterioscler Thromb Vasc Biol. 26:163–168.
2006. View Article : Google Scholar
|
27
|
Huang H, Chang EJ, Lee Y, Kim JS, Kang SS
and Kim HH: A genome-wide microarray analysis reveals
anti-inflammatory target genes of paeonol in macrophages. Inflamm
Res. 57:189–198. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao JF, Ching LC, Huang YC, et al:
Molecular mechanism of curcumin on the suppression of cholesterol
accumulation in macrophage foam cells and atherosclerosis. Mol Nutr
Food Res. 56:691–701. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Witztum JL: You are right too! J Clin
Invest. 115:2072–2075. 2005. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Kunjathoor VV, Febbraio M, Podrez EA, et
al: Scavenger receptors class A-I/II and CD36 are the principal
receptors responsible for the uptake of modified low density
lipoprotein leading to lipid loading in macrophages. J Biol Chem.
277:49982–49988. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fuhrman B, Volkova N and Aviram M:
Oxidative stress increases the expression of the CD36 scavenger
receptor and the cellular uptake of oxidized low-density
lipoprotein in macrophages from atherosclerotic mice: protective
role of antioxidants and of paraoxonase. Atherosclerosis.
161:307–316. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Venugopal SK, Devaraj S and Jialal I:
RRR-alpha-tocopherol decreases the expression of the major
scavenger receptor, CD36, in human macrophages via inhibition of
tyrosine kinase (Tyk2). Atherosclerosis. 175:213–220. 2004.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Tang C and Oram JF: The cell cholesterol
exporter ABCA1 as a protector from cardiovascular disease and
diabetes. Biochim Biophys Acta. 1791:563–572. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chang YC, Lee TS and Chiang AN: Quercetin
enhances ABCA1 expression and cholesterol efflux through a
p38-dependent pathway in macrophages. J Lipid Res. 53:1840–1850.
2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gao J, Xu Y, Yang Y, et al: Identification
of upregulators of human ATP-binding cassette transporter A1 via
high-throughput screening of a synthetic and natural compound
library. J Biomol Screen. 13:648–656. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Arakawa R and Yokoyama S: Helical
apolipoproteins stabilize ATP-binding cassette transporter A1 by
protecting it from thiol protease-mediated degradation. J Biol
Chem. 277:22426–22429. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Martinez LO, Agerholm-Larsen B, Wang N,
Chen W and Tall AR: Phosphorylation of a pest sequence in ABCA1
promotes calpain degradation and is reversed by ApoA-I. J Biol
Chem. 278:37368–37374. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen CY, Shyue SK, Ching LC, et al:
Wogonin promotes cholesterol efflux by increasing protein
phosphatase 2B-dependent dephosphorylation at ATP-binding cassette
transporter-A1 in macrophages. J Nutr Biochem. 22:1015–1021. 2011.
View Article : Google Scholar
|
39
|
Juan SH, Lee TS, Tseng KW, et al:
Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the
development of atherosclerosis in apolipoprotein E-deficient mice.
Circulation. 104:1519–1525. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yet SF, Layne MD, Liu X, et al: Absence of
heme oxygenase-1 exacerbates atherosclerotic lesion formation and
vascular remodeling. FASEB J. 17:1759–1761. 2003.PubMed/NCBI
|
41
|
Ishikawa K, Sugawara D, Goto J, et al:
Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable
hyperlipidemic rabbits. Circulation. 104:1831–1836. 2001.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Idriss NK, Blann AD and Lip GY:
Hemoxygenase-1 in cardiovascular disease. J Am Coll Cardiol.
52:971–978. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang YQ, Dai M, Zhong JC and Yin DK:
Paeonol inhibits oxidized low density lipoprotein-induced monocyte
adhesion to vascular endothelial cells by inhibiting the mitogen
activated protein kinase pathway. Biol Pharm Bull. 35:767–772.
2012. View Article : Google Scholar : PubMed/NCBI
|