1
|
Zhang Z, Chen C, Wang G, Yang Z, San J,
Zheng J, Li Q, Luo X, Hu Q, Li Z and Wang D: Aberrant expression of
the p53-inducible antiproliferative gene BTG2 in hepatocellular
carcinoma is associated with overexpression of the cell
cycle-related proteins. Cell Biochem Biophys. 61:83–91. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Horvilleur E, Bauer M, Goldschneider D,
Mergui X, de la Motte A, Benard J, Douc-Rasy S and Cappellen D:
p73alpha isoforms drive opposite transcriptional and
post-transcriptional regulation of MYCN expression in neuroblastoma
cells. Nucleic Acids Res. 36:4222–4232. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Boiko AD, Porteous S, Razorenova OV,
Krivokrysenko VI, Williams BR and Gudkov AV: A systematic search
for downstream mediators of tumor suppressor function of p53
reveals a major role of BTG2 in suppression of Ras-induced
transformation. Genes Dev. 20:236–252. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Horiuchi M, Takeuchi K, Noda N, Muroya N,
Suzuki T, Nakamura T, Kawamura-Tsuzuku J, Takahasi K, Yamamoto T
and Inagaki F: Structural basis for the antiproliferative activity
of the Tob-hCaf1 complex. J Biol Chem. 284:13244–13255. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Winkler GS: The mammalian
anti-proliferative BTG/Tob protein family. J Cell Physiol.
222:66–72. 2010. View Article : Google Scholar
|
6
|
Yang X, Morita M, Wang H, Suzuki T, Yang
W, Luo Y, Zhao C, Yu Y, Bartlam M, Yamamoto T and Rao Z: Crystal
structures of human BTG2 and mouse TIS21 involved in suppression of
CAF1 deadenylase activity. Nucleic Acids Res. 36:6872–6881. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Duriez C, Moyret-Lalle C, Falette N,
El-Ghissassi F and Puisieux A: BTG2, its family and its tutor. Bull
Cancer. 91:E242–E253. 2004.PubMed/NCBI
|
8
|
Busson M, Carazo A, Seyer P, Grandemange
S, Casas F, Pessemesse L, Rouault JP, Wrutniak-Cabello C and
Cabello G: Coactivation of nuclear receptors and myogenic factors
induces the major BTG1 influence on muscle differentiation.
Oncogene. 24:1698–1710. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ou YH, Chung PH, Hsu FF, Sun TP, Chang WY
and Shieh SY: The candidate tumor suppressor BTG3 is a
transcriptional target of p53 that inhibits E2F1. EMBO J.
26:3968–3980. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Buanne P, Corrente G, Micheli L, Palena A,
Lavia P, Spadafora C, Lakshmana MK, Rinaldi A, Banfi S, Quarto M,
Bulfone A and Tirone F: Cloning of PC3B, a novel member of the
PC3/BTG/ TOB family of growth inhibitory genes, highly expressed in
the olfactory epithelium. Genomics. 68:253–263. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lim IK: TIS21 (/BTG2/PC3) as a link
between ageing and cancer: cell cycle regulator and endogenous cell
death molecule. J Cancer Res Clin Oncol. 132:417–426. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bradbury A, Possenti R, Shooter EM and
Tirone F: Molecular cloning of PC3, a putatively secreted protein
whose mRNA is induced by nerve growth factor and depolarization.
Proc Natl Acad Sci USA. 88:3353–3357. 1991. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fletcher BS, Lim RW, Varnum BC, Kujubu DA,
Koski RA and Herschman HR: Structure and expression of TIS21, a
primary response gene induced by growth factors and tumor
promoters. J Biol Chem. 266:14511–14518. 1991.PubMed/NCBI
|
14
|
Rouault JP, Falette N, Guehenneux F,
Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P,
Pain B, Shaw P, Berger R, Samarut J, Magaud JP, Ozturk M, Samarut C
and Puisieux A: Identification of BTG2, an antiproliferative
p53-dependent component of the DNA damage cellular response
pathway. Nat Genet. 14:482–486. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Melamed J, Kernizan S and Walden PD:
Expression of B-cell translocation gene 2 protein in normal human
tissues. Tissue Cell. 34:28–32. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Passeri D, Marcucci A, Rizzo G, Billi M,
Panigada M, Leonardi L, Tirone F and Grignani F: Btg2 enhances
retinoic acid-induced differentiation by modulating histone H4
methylation and acetylation. Mol Cell Biol. 26:5023–5032. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Konrad MA and Zuniga-Pflucker JC: The
BTG/TOB family protein TIS21 regulates stage-specific proliferation
of developing thymocytes. Eur J Immunol. 35:3030–3042. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Matsuda S, Rouault J, Magaud J and Berthet
C: In search of a function for the TIS21/PC3/BTG1/TOB family. FEBS
Lett. 497:67–72. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cho BO, Jeong YW, Kim SH, Park K, Lee JH,
Kweon GR and Park JC: Up-regulation of the BTG2 gene in TPA- or
RA-treated HL-60 cell lines. Oncol Rep. 19:633–637. 2008.PubMed/NCBI
|
20
|
Zhang L, Huang H, Wu K, Wang M and Wu B:
Impact of BTG2 expression on proliferation and invasion of gastric
cancer cells in vitro. Mol Biol Rep. 37:2579–2586. 2010. View Article : Google Scholar
|
21
|
Ma XM and Ni KL: Expression of
antiproliferation gene BTG2 in human pancreatic cancer and its
antiproliferation effect. World J Tumor. 9:20–24. 2010.(In
Chinese).
|
22
|
Wei S, Hao C, Li X, Zhao H, Chen J and
Zhou Q: Effects of BTG2 on proliferation inhibition and
anti-invasion in human lung cancer cells. Tumour Biol.
33:1223–1230. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wagener N, Bulkescher J, Macher-Goeppinger
S, Karapanagiotou-Schenkel I, Hatiboglu G, Abdel-Rahim M,
Abol-Enein H, Ghoneim MA, Bastian PJ, Muller SC, Haferkamp A,
Hohenfellner M, Hoppe-Seyler F and Hoppe-Seyler K: Endogenous BTG2
expression stimulates migration of bladder cancer cells and
correlates with poor clinical prognosis for bladder cancer
patients. Br J Cancer. 108:973–982. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang ZM, Wang G, Yang ZX, Shan JL, Chen
C, Jin F, Xu W, Li Q, Luo XZ, Wang D and Li ZP: The expression of
B-cell translocation gene 2 in diethylnitrosamine-induced primary
hepatocellular carcinoma rat model. Chin J Hepatol. 17:107–111.
2009.(In Chinese).
|
25
|
Kis E, Szatmári T, Keszei M, Farkas R,
Esik O, Lumniczky K, Falus A and Sáfrány G: Microarray analysis of
radiation response genes in primary human fibroblasts. Int J Radiat
Oncol Biol Phys. 66:1506–1514. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chu TY, Yang JT, Huang TH and Liu HW:
Crosstalk with cancer-associated fibroblasts increases the growth
and radiation survival of cervical cancer cells. Radiat Res.
181:540–547. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Choi KS, Kim JY, Lim SK, Choi YW, Kim YH,
Kang SY, Park TJ and Lim IK: TIS21(/BTG2/PC3) accelerates the
repair of DNA double strand breaks by enhancing Mre11 methylation
and blocking damage signal transfer to the Chk2(T68)-p53(S20)
pathway. DNA Repair (Amst). 11:965–975. 2012. View Article : Google Scholar
|
28
|
Zhang YJ, Wei L, Liu M, Li J, Zheng YQ,
Gao Y and Li XR: BTG2 inhibits the proliferation, invasion, and
apoptosis of MDA-MB-231 triple-negative breast cancer cells. Tumour
Biol. 34:1605–1613. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hong JW, Ryu MS and Lim IK:
Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces
Pin-1 binding in cytoplasm and cell death. J Biol Chem.
280:21256–21263. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Farioli-Vecchioli S, Tanori M, Micheli L,
Mancuso M, Leonardi L, Saran A, Ciotti MT, Ferretti E, Gulino A,
Pazzaglia S and Tirone F: Inhibition of medulloblastoma
tumorigenesis by the antiproliferative and pro-differentiative gene
PC3. FASEB J. 21:2215–22125. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Imran M and Lim IK: Regulation of
Btg2(/TIS21/PC3) expression via reactive oxygen species-protein
kinase C-NFκB pathway under stress conditions. Cell Signal.
25:2400–2412. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lim IK, Lee MS, Ryu MS, Park TJ, Fujiki H,
Eguchi H and Paik WK: Induction of growth inhibition of 293 cells
by downregulation of the cyclin E and cyclin-dependent kinase 4
proteins due to overexpression of TIS21. Mol Carcinog. 23:25–35.
1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lim SK, Choi YW, Lim IK and Park TJ: BTG2
suppresses cancer cell migration through inhibition of Src-FAK
signaling by downregulation of reactive oxygen species generation
in mitochondria. Clin Exp Metastasis. 29:901–913. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chiang KC, Tsui KH, Chung LC, Yeh CN, Feng
TH, Chen WT, Chang PL, Chiang HY and Juang HH: Cisplatin modulates
B-cell translocation gene 2 to attenuate cell proliferation of
prostate carcinoma cells in both p53-dependent and p53-independent
pathways. Sci Rep. 4:55112014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Quy LN, Choi YW, Kim YH, Chwae YJ, Park TJ
and Lim IK: TIS21(/BTG2/PC3) inhibits interleukin-6 expression via
downregulation of STAT3 pathway. Cell Signal. 25:2391–2399. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Farioli-Vecchioli S, Saraulli D, Costanzi
M, Leonardi L, Cinà I, Micheli L, Nutini M, Longone P, Oh SP,
Cestari V and Tirone F: Impaired terminal differentiation of
hippocampal granule neurons and defective contextual memory in
PC3/Tis21 knockout mice. PLoS One. 4:e83392009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Imran M, Park TJ and Lim IK:
TIS21/BTG2/PC3 enhances downregulation of c-Myc during
differentiation of HL-60 cells by activating Erk1/2 and inhibiting
Akt in response to all-transretinoic acid. Eur J Cancer.
48:2474–2485. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park TJ, Kim JY, Oh SP, Kang SY, Kim BW,
Wang HJ, Song KY, Kim HC and Lim IK: TIS21 negatively regulates
hepatocarcinogenesis by disruption of cyclin B1-Forkhead box M1
regulation loop. Hepatology. 47:1533–1543. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ryu MS, Lee MS, Hong JW, Hahn TR, Moon E
and Lim IK: TIS21/BTG2/PC3 is expressed through PKC-delta pathway
and inhibits binding of cyclin B1-Cdc2 and its activity,
independent of p53 expression. Exp Cell Res. 299:159–170. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Miyata S, Mori Y and Tohyama M: PRMT1 and
Btg2 regulates neurite outgrowth of Neuro2a cells. Neurosci Lett.
445:162–165. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Del Puerto HL, Martins AS, Moro L, Milsted
A, Alves F, Braz GF and Vasconcelos AC: Caspase-3/-8/-9, Bax and
Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of
dogs naturally infected with canine distemper virus. Genet Mol Res.
9:151–161. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hu X, Xing L, Jiao Y, Xu J, Wang X, Han A
and Yu J: BTG2 overexpression increases the radiosensitivity of
breast cancer cells in vitro and in vivo. Oncol Res. 20:457–465.
2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Taenzer A, Alix-Panabieres C, Wikman H and
Pantel K: Circulating tumor-derived biomarkers in lung cancer. J
Thorac Dis. 4:448–449. 2012.PubMed/NCBI
|
45
|
Plaisance-Bonstaff K and Renne R: Viral
miRNAs. Methods Mol Biol. 721:43–66. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kato M and Slack FJ: MicroRNAs: small
molecules with big roles - C. elegans to human cancer. Biol Cell.
100:71–81. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu J, Liu X, Cui F, Chen G, Guan Y and He
J: The efficacy of the inhalation of an aerosolized Group A
streptococcal preparation in the treatment of lung cancer. Chin J
Cancer Res. 24:346–352. 2012.(In Chinese). View Article : Google Scholar
|
48
|
Pass HI: Biomarkers and prognostic factors
for mesothelioma. Ann Cardiothorac Surg. 1:449–456. 2012.
|
49
|
Coppola V, Musumeci M, Patrizii M,
Cannistraci A, Addario A, Maugeri-Sacca M, Biffoni M,
Francescangeli F, Cordenonsi M, Piccolo S, Memeo L, Pagliuca A,
Muto G, Zeuner A, De Maria R and Bonci D: BTG2 loss and miR-21
upregulation contribute to prostate cell transformation by inducing
luminal markers expression and epithelial-mesenchymal transition.
Oncogene. 32:1843–1853. 2013. View Article : Google Scholar
|
50
|
Niu J, Shi Y, Tan G, Yang CH, Fan M,
Pfeffer LM and Wu ZH: DNA damage induces NF-kappaB-dependent
microRNA-21 up-regulation and promotes breast cancer cell invasion.
J Biol Chem. 287:21783–21795. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY and
Yan M: microRNA-21 promotes tumor proliferation and invasion in
gastric cancer by targeting PTEN. Oncol Rep. 27:1019–1026.
2012.PubMed/NCBI
|
52
|
Liu M, Wu H, Liu T, Li Y, Wang F, Wan H,
Li X and Tang H: Regulation of the cell cycle gene, BTG2, by miR-21
in human laryngeal carcinoma. Cell Res. 19:828–837. 2009.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Yang CH, Yue J, Pfeffer SR, Handorf CR and
Pfeffer LM: MicroRNA miR-21 regulates the metastatic behavior of
B16 melanoma cells. J Biol Chem. 286:39172–39178. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sun Q, Hang M, Guo X, Shao W and Zeng G:
Expression and significance of miRNA-21 and BTG2 in lung cancer.
Tumour Biol. 34:4017–4026. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Frampton AE, Castellano L, Colombo T,
Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel
N, Gall TM, De Giorgio A, Pinho FG, Fulci V, Britton DJ, Ahmad R,
Habib NA, Coombes RC, Harding V, Knösel T, Stebbing J and Jiao LR:
MicroRNAs cooperatively inhibit a network of tumor suppressor genes
to promote pancreatic tumor growth and progression.
Gastroenterology. 146:268–277.e18. 2014. View Article : Google Scholar
|
56
|
Jalava SE, Urbanucci A, Latonen L,
Waltering KK, Sahu B, Jänne OA, Seppälä J, Lähdesmäki H, Tammela TL
and Visakorpi T: Androgen-regulated miR-32 targets BTG2 and is
overexpressed in castration-resistant prostate cancer. Oncogene.
31:4460–4471. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Alvarez-Saavedra M, Antoun G, Yanagiya A,
Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N
and Cheng HY: miRNA-132 orchestrates chromatin remodeling and
translational control of the circadian clock. Hum Mol Genet.
20:731–751. 2011. View Article : Google Scholar :
|
58
|
Li Q, Wang G and Zhang ZM: The
relationship between microRNA-18 and BTG2 in the carcinogenesis of
hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 17:42–45.
2009.(In Chinese). PubMed/NCBI
|
59
|
Takahashi F, Chiba N, Tajima K, Hayashida
T, Shimada T, Takahashi M, Moriyama H, Brachtel E, Edelman EJ,
Ramaswamy S and Maheswaran S: Breast tumor progression induced by
loss of BTG2 expression is inhibited by targeted therapy with the
ErbB/HER inhibitor lapatinib. Oncogene. 30:3084–3095. 2011.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Choi JA and Lim IK: TIS21/BTG2 inhibits
invadopodia formation by downregulating reactive oxygen species
level in MDA-MB-231 cells. J Cancer Res Clin Oncol. 139:1657–1665.
2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Struckmann K, Schraml P, Simon R,
Elmenhorst K, Mirlacher M, Kononen J and Moch H: Impaired
expression of the cell cycle regulator BTG2 is common in clear cell
renal cell carcinoma. Cancer Res. 64:1632–1638. 2004. View Article : Google Scholar : PubMed/NCBI
|